63 lines
1.9 KiB
Python
63 lines
1.9 KiB
Python
|
import numpy as np
|
||
|
from sklearn.gaussian_process.kernels import Kernel, Hyperparameter
|
||
|
from sklearn.gaussian_process.kernels import GenericKernelMixin
|
||
|
from sklearn.gaussian_process import GaussianProcessRegressor
|
||
|
#from sklearn.gaussian_process import GaussianProcessClassifier
|
||
|
from sklearn.base import clone
|
||
|
|
||
|
class BookKernel(GenericKernelMixin, Kernel):
|
||
|
def __init__(self, G):
|
||
|
self.baseline_similarity = 0.5
|
||
|
self.baseline_similarity_bounds = (1e-5, 1)
|
||
|
|
||
|
self.G = G
|
||
|
self.node2vec = Node2Vec(self.G, dimensions=32, walk_length=16, num_walks=256, workers=8)
|
||
|
self.model = node2vec.fit(window=10, min_count=1, batch_words=4)
|
||
|
self.wv = self.model.wv
|
||
|
|
||
|
def _f(self, s1, s2):
|
||
|
return self.wv.similarity(s1, s2)
|
||
|
|
||
|
def __call__(self, X, Y=None, eval_gradient=False):
|
||
|
if Y is None:
|
||
|
Y = X
|
||
|
|
||
|
if eval_gradient:
|
||
|
return (
|
||
|
np.array([[self._f(x, y) for y in Y] for x in X]),
|
||
|
)
|
||
|
else:
|
||
|
return np.array([[self._f(x, y) for y in Y] for x in X])
|
||
|
|
||
|
def diag(self, X):
|
||
|
return self(X)
|
||
|
|
||
|
def is_stationary(self):
|
||
|
return False
|
||
|
|
||
|
def clone_with_theta(self, theta):
|
||
|
cloned = clone(self)
|
||
|
cloned.theta = theta
|
||
|
return cloned
|
||
|
|
||
|
def genGprScores(G, globMu, globStd, scoreName='gpr_score', stdName='gpr_std'):
|
||
|
gpr = GaussianProcessRegressor(kernel=BookKernel(G), random_state=3141)
|
||
|
X, y = [], []
|
||
|
for n in G.nodes:
|
||
|
node = G.nodes[n]
|
||
|
if node['rating']!=None:
|
||
|
X.append(n)
|
||
|
y.append(node['rating'])
|
||
|
gpr.fit(X, y)
|
||
|
X = []
|
||
|
for n in G.nodes:
|
||
|
node = G.nodes[n]
|
||
|
if node['rating']==None:
|
||
|
X.append(n)
|
||
|
y,stds = gpr.predict(X, return_std=True)
|
||
|
for n in G.nodes:
|
||
|
node = G.nodes[n]
|
||
|
if node['rating']==None:
|
||
|
y, std = y.pop(0), stds.pop(0)
|
||
|
node[scoreName], node[stdName] = y, std
|