2021-06-14 22:20:36 +02:00
|
|
|
import os
|
|
|
|
import json
|
|
|
|
import math
|
|
|
|
import random
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from scipy.stats import norm
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import networkx as nx
|
|
|
|
from pyvis.network import Network
|
|
|
|
|
|
|
|
|
|
|
|
def getAllAuthors(books):
|
|
|
|
authors = set()
|
|
|
|
for book in books:
|
|
|
|
for author in getAuthors(book):
|
|
|
|
authors.add(author)
|
|
|
|
return list(authors)
|
|
|
|
|
|
|
|
|
|
|
|
def getAuthors(book):
|
|
|
|
return book['authors'].split(' & ')
|
|
|
|
|
|
|
|
|
|
|
|
def getRecommenders(book):
|
|
|
|
for tag in book['tags']:
|
|
|
|
if tag.find(" Recommendation") != -1:
|
|
|
|
yield tag.replace(" Recommendation", "")
|
|
|
|
|
|
|
|
|
|
|
|
def getTags(book):
|
|
|
|
for tag in book['tags']:
|
|
|
|
if tag.find(" Recommendation") == -1 and tag.find(" Top ") == -1:
|
|
|
|
yield tag
|
|
|
|
|
|
|
|
|
|
|
|
def getAllRecommenders(books):
|
|
|
|
recs = set()
|
|
|
|
for book in books:
|
|
|
|
for rec in getRecommenders(book):
|
|
|
|
recs.add(rec)
|
|
|
|
return list(recs)
|
|
|
|
|
|
|
|
|
|
|
|
def getTopLists(book):
|
|
|
|
lists = set()
|
|
|
|
for tag in book['tags']:
|
|
|
|
if tag.find(" Top ") != -1:
|
|
|
|
lists.add(tag.split(" Top ")[0])
|
|
|
|
return list(lists)
|
|
|
|
|
|
|
|
|
|
|
|
def getAllTopLists(books):
|
|
|
|
tops = set()
|
|
|
|
for book in books:
|
|
|
|
for top in getTopLists(book):
|
|
|
|
tops.add(top)
|
|
|
|
return list(tops)
|
|
|
|
|
|
|
|
|
|
|
|
def getAllSeries(books):
|
|
|
|
series = set()
|
|
|
|
for book in books:
|
|
|
|
if 'series' in book:
|
|
|
|
series.add(book['series'])
|
|
|
|
return list(series)
|
|
|
|
|
|
|
|
|
|
|
|
def getAllTags(books):
|
|
|
|
tags = set()
|
|
|
|
for book in books:
|
|
|
|
for tag in getTags(book):
|
|
|
|
tags.add(tag)
|
|
|
|
return list(tags)
|
|
|
|
|
|
|
|
|
|
|
|
def getTopListWheight(book, topList):
|
|
|
|
minScope = 100000
|
|
|
|
for tag in book['tags']:
|
|
|
|
if tag.find(topList+" Top ") != -1:
|
|
|
|
scope = int(tag.split(" Top ")[1])
|
|
|
|
minScope = min(minScope, scope)
|
|
|
|
if minScope == 100000:
|
|
|
|
raise Exception("You stupid?")
|
|
|
|
return 100/minScope
|
|
|
|
|
|
|
|
|
|
|
|
def removeRead(G):
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] == 'book':
|
|
|
|
if node['rating'] != None:
|
|
|
|
G.remove_node(n)
|
|
|
|
|
|
|
|
|
|
|
|
def removeUnread(G):
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] == 'book':
|
|
|
|
if node['rating'] == None:
|
|
|
|
G.remove_node(n)
|
|
|
|
|
|
|
|
|
|
|
|
def removePriv(G):
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] == 'book':
|
|
|
|
if 'priv' in node['tags']:
|
|
|
|
G.remove_node(n)
|
|
|
|
|
|
|
|
|
|
|
|
def removeDangling(G, alsoBooks=False):
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] != 'book' or alsoBooks:
|
|
|
|
if not len(G.adj[n]):
|
|
|
|
G.remove_node(n)
|
|
|
|
|
|
|
|
|
|
|
|
def removeEdge(G):
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] != 'book':
|
|
|
|
if len(G.adj[n]) < 2:
|
|
|
|
G.remove_node(n)
|
|
|
|
|
|
|
|
|
|
|
|
def removeBad(G, threshold, groups=['book', 'topList', 'recommender', 'author', 'series', 'tag']):
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] in groups:
|
|
|
|
if 'score' in node and (node['score'] == None or node['score'] < threshold):
|
|
|
|
G.remove_node(n)
|
|
|
|
|
|
|
|
|
|
|
|
def removeKeepBest(G, num, maxDistForRead=1):
|
|
|
|
bestlist = []
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] == 'book':
|
|
|
|
if 'score' in node and node['score'] != None:
|
|
|
|
bestlist.append(node)
|
|
|
|
bestlist.sort(key=lambda node: node['score'], reverse=True)
|
|
|
|
bestlist = bestlist[:num]
|
|
|
|
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] == 'book' and node not in bestlist or 'score' in node and node['score'] == None:
|
|
|
|
if not 'rating' in node or node['rating'] == None or node['rating'] < bestlist[-1]['score']-maxDistForRead:
|
|
|
|
G.remove_node(n)
|
|
|
|
|
|
|
|
|
|
|
|
def removeTags(G):
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] == 'tag':
|
|
|
|
G.remove_node(n)
|
|
|
|
|
|
|
|
|
|
|
|
def pruneTags(G, minCons=2):
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] == 'tag':
|
|
|
|
foundCon = 0
|
|
|
|
for book in G.adj[n]:
|
|
|
|
for con in G.adj[book]:
|
|
|
|
if G.nodes[con]['t'] not in ['tag', 'topList']:
|
|
|
|
foundCon += 1
|
|
|
|
if foundCon > minCons:
|
|
|
|
G.remove_node(n)
|
|
|
|
|
2021-06-15 13:52:41 +02:00
|
|
|
def pruneRecommenderCons(G, maxCons=5):
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] == 'recommender':
|
|
|
|
if len(G.adj[n]) > maxCons:
|
|
|
|
bestlist = []
|
|
|
|
for m in list(G.adj[n]):
|
|
|
|
book = G.nodes[m]
|
|
|
|
if book['t'] == 'book':
|
|
|
|
if 'score' in book and book['score'] != None:
|
|
|
|
bestlist.append(book)
|
|
|
|
bestlist.sort(key=lambda node: node['score'], reverse=True)
|
|
|
|
bestlist = bestlist[:maxCons]
|
|
|
|
|
|
|
|
for m in list(G.adj[n]):
|
|
|
|
book = G.nodes[m]
|
|
|
|
if book['t'] == 'book' and book not in bestlist or 'score' in book and book['score'] == None:
|
|
|
|
if not 'rating' in book or book['rating'] == None:
|
|
|
|
foundCon = 0
|
|
|
|
for con in G.adj[m]:
|
|
|
|
if G.nodes[con]['t'] not in ['topList']:
|
|
|
|
foundCon += 1
|
|
|
|
if foundCon < 2:
|
|
|
|
G.remove_node(m)
|
|
|
|
|
2021-06-14 22:20:36 +02:00
|
|
|
|
|
|
|
def removeHighSpanTags(G, maxCons=5):
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] == 'tag':
|
|
|
|
if len(G.adj[n]) > maxCons:
|
|
|
|
G.remove_node(n)
|
|
|
|
|
|
|
|
|
|
|
|
def removeTopLists(G):
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] == 'topList':
|
|
|
|
G.remove_node(n)
|
|
|
|
|
|
|
|
|
|
|
|
def removeRestOfSeries(G):
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] == 'series':
|
|
|
|
seriesState = 0
|
|
|
|
for adj in G.adj[n]:
|
|
|
|
adjNode = G.nodes[adj]
|
|
|
|
if adjNode['rating'] != None:
|
|
|
|
seriesState = max(seriesState, int(
|
|
|
|
adjNode['series_index']))
|
|
|
|
for adj in list(G.adj[n]):
|
|
|
|
adjNode = G.nodes[adj]
|
|
|
|
if adjNode['series_index'] > seriesState + 1.0001:
|
|
|
|
G.remove_node(adj)
|
|
|
|
|
|
|
|
|
2021-06-15 13:52:41 +02:00
|
|
|
def scoreOpinions(G, globMu, globStd, errorFac=0.7):
|
2021-06-14 22:20:36 +02:00
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
feedbacks = []
|
|
|
|
if node['t'] in ['topList', 'recommender', 'author', 'series', 'tag']:
|
|
|
|
adjacens = list(G.adj[n].keys())
|
|
|
|
for adj in adjacens:
|
|
|
|
adjNode = G.nodes[adj]
|
|
|
|
if adjNode['rating'] != None:
|
|
|
|
feedbacks.append(adjNode['rating'])
|
|
|
|
if len(feedbacks):
|
|
|
|
node['mean'], node['std'] = norm.fit(feedbacks)
|
|
|
|
node['se'] = globStd / math.sqrt(len(feedbacks))
|
|
|
|
ratio = len(feedbacks) / len(adjacens)
|
|
|
|
node['score'] = node['mean'] - errorFac * \
|
2021-06-15 13:52:41 +02:00
|
|
|
node['se']*(6/7 + (1-ratio)/7) + 0.001 * \
|
2021-06-14 22:20:36 +02:00
|
|
|
(node['t'] == 'recommender')
|
|
|
|
node['feedbacks'] = feedbacks
|
|
|
|
else:
|
|
|
|
node['score'] = None
|
|
|
|
|
|
|
|
|
2021-06-15 13:52:41 +02:00
|
|
|
def scoreUnread(G, globMu, globStd, errorFac=0.6):
|
2021-06-14 22:20:36 +02:00
|
|
|
for n in list(G.nodes):
|
|
|
|
feedbacks = []
|
|
|
|
deepFeedbacks = []
|
|
|
|
tagFeedbacks = []
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] == 'book':
|
|
|
|
if node['rating'] == None:
|
|
|
|
adjacens = list(G.adj[n].keys())
|
|
|
|
for adj in adjacens:
|
|
|
|
adjNode = G.nodes[adj]
|
|
|
|
if 'score' in adjNode and adjNode['score'] != None:
|
|
|
|
if adjNode['t'] != 'tag':
|
|
|
|
feedbacks.append(adjNode['score'])
|
|
|
|
for fb in adjNode['feedbacks']:
|
|
|
|
deepFeedbacks.append(fb)
|
|
|
|
else:
|
|
|
|
tagFeedbacks.append(adjNode['score'])
|
|
|
|
if len(feedbacks):
|
|
|
|
node['mean'], node['std'] = norm.fit(deepFeedbacks)
|
|
|
|
node['mean2'], node['std2'] = norm.fit(feedbacks)
|
|
|
|
f_mean, f_std = norm.fit(feedbacks)
|
|
|
|
node['se'] = globStd / math.sqrt(len(deepFeedbacks))
|
|
|
|
# - errorFac*node['se']
|
|
|
|
node['score'] = (
|
2021-06-15 12:02:32 +02:00
|
|
|
(node['mean'] - errorFac*node['se'])*4 + node['mean2']*2 + (f_mean)*1)/7
|
2021-06-14 22:20:36 +02:00
|
|
|
if 'series' in node:
|
|
|
|
if node['series_index'] == 1.0:
|
|
|
|
node['score'] += 0.000000001
|
|
|
|
else:
|
|
|
|
node['score'] = None
|
|
|
|
|
|
|
|
|
|
|
|
def printBestList(G, num=25):
|
|
|
|
bestlist = []
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] == 'book':
|
|
|
|
if 'score' in node and node['score'] != None:
|
|
|
|
bestlist.append(node)
|
|
|
|
bestlist.sort(key=lambda node: node['score'], reverse=True)
|
|
|
|
for i, book in enumerate(bestlist):
|
|
|
|
print("["+str(i+1).zfill(int(math.log10(num)+1))+"] "+book['title'] +
|
|
|
|
" ("+" & ".join(book['authors'])+"): {:.5f}".format(book['score']))
|
|
|
|
if i == num-1:
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
|
|
def readColor(book):
|
|
|
|
if 'rating' in book:
|
|
|
|
return 'green'
|
|
|
|
else:
|
|
|
|
return 'gray'
|
|
|
|
|
|
|
|
|
|
|
|
def loadBooksFromDB():
|
|
|
|
return json.loads(os.popen("calibredb list --for-machine -f all").read())
|
|
|
|
|
|
|
|
|
|
|
|
def buildBookGraph(books):
|
|
|
|
G = nx.Graph()
|
|
|
|
|
|
|
|
# Books
|
|
|
|
for book in books:
|
|
|
|
if 'rating' in book:
|
|
|
|
rating = book['rating']
|
|
|
|
else:
|
|
|
|
rating = None
|
|
|
|
if 'comments' in book:
|
|
|
|
desc = '' # book['comments']
|
|
|
|
else:
|
|
|
|
desc = ''
|
|
|
|
if 'series' in book:
|
|
|
|
series = book['series']
|
|
|
|
series_index = book['series_index']
|
|
|
|
else:
|
|
|
|
series = None
|
|
|
|
series_index = None
|
|
|
|
G.add_node(book['id'], t='book', label=book['title'], title=book['title'], shape='image', image=book['cover'], rating=rating,
|
|
|
|
tags=book['tags'], desc=desc, isbn=book['isbn'], files=book['formats'], authors=getAuthors(book), series=series, series_index=series_index)
|
|
|
|
|
|
|
|
return G
|
|
|
|
|
|
|
|
|
|
|
|
def graphAddAuthors(G, books):
|
|
|
|
for author in getAllAuthors(books):
|
|
|
|
G.add_node('a/'+author, color='green', t='author', label=author)
|
|
|
|
for book in books:
|
|
|
|
for author in getAuthors(book):
|
|
|
|
G.add_edge('a/'+author, book['id'], color=readColor(book))
|
|
|
|
return G
|
|
|
|
|
|
|
|
|
|
|
|
def graphAddRecommenders(G, books):
|
|
|
|
for rec in getAllRecommenders(books):
|
|
|
|
G.add_node('r/'+rec, color='orange', t='recommender', label=rec)
|
|
|
|
for book in books:
|
|
|
|
for rec in getRecommenders(book):
|
|
|
|
G.add_edge('r/'+rec, book['id'], color=readColor(book))
|
|
|
|
return G
|
|
|
|
|
|
|
|
|
|
|
|
def graphAddTopLists(G, books):
|
|
|
|
for tl in getAllTopLists(books):
|
|
|
|
G.add_node('t/'+tl, color='yellow', t='topList', label=tl)
|
|
|
|
for book in books:
|
|
|
|
for top in getTopLists(book):
|
|
|
|
G.add_edge('t/'+top, book['id'], wheight=getTopListWheight(
|
|
|
|
book, top), color=readColor(book))
|
|
|
|
return G
|
|
|
|
|
|
|
|
|
|
|
|
def graphAddSeries(G, books):
|
|
|
|
for series in getAllSeries(books):
|
|
|
|
G.add_node('s/'+series, color='red', t='series', label=series)
|
|
|
|
for book in books:
|
|
|
|
if 'series' in book:
|
|
|
|
G.add_edge('s/'+book['series'], book['id'], color=readColor(book))
|
|
|
|
return G
|
|
|
|
|
|
|
|
|
|
|
|
def graphAddTags(G, books):
|
|
|
|
for tag in getAllTags(books):
|
|
|
|
G.add_node('t/'+tag, color='gray', t='tag', label=tag)
|
|
|
|
for book in books:
|
|
|
|
for tag in getTags(book):
|
|
|
|
G.add_edge('t/'+tag, book['id'], color=readColor(book))
|
|
|
|
return G
|
|
|
|
|
|
|
|
|
|
|
|
def calcRecDist(G, books):
|
|
|
|
globRatings = []
|
|
|
|
for book in books:
|
|
|
|
if G.nodes[book['id']]['rating'] != None:
|
|
|
|
globRatings.append(G.nodes[book['id']]['rating'])
|
|
|
|
return norm.fit(globRatings)
|
|
|
|
|
|
|
|
|
|
|
|
def scaleBooksByRating(G):
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] not in []:
|
|
|
|
if 'rating' in node and node['rating'] != None:
|
|
|
|
node['value'] = 20 + 5 * int(node['rating'])
|
|
|
|
else:
|
|
|
|
if 'score' in node and node['score'] != None:
|
|
|
|
node['value'] = 20 + 5 * int(node['score'])
|
|
|
|
else:
|
|
|
|
node['value'] = 15
|
|
|
|
|
|
|
|
|
|
|
|
def scaleOpinionsByRating(G):
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] in ['topList', 'recommender', 'author', 'series']:
|
|
|
|
if 'score' in node and node['score'] != None:
|
|
|
|
node['value'] = 20 + 5 * int(node['score'])
|
|
|
|
else:
|
|
|
|
node['value'] = 20
|
|
|
|
|
|
|
|
|
|
|
|
def addScoreToLabels(G):
|
|
|
|
for n in list(G.nodes):
|
|
|
|
node = G.nodes[n]
|
|
|
|
if node['t'] not in ['tag']:
|
|
|
|
if 'rating' in node and node['rating'] != None:
|
|
|
|
node['label'] += " ("+str(node['rating'])+")"
|
|
|
|
else:
|
|
|
|
if 'score' in node and node['score'] != None:
|
|
|
|
node['label'] += " (~{:.2f}".format(node['score'])+")"
|
|
|
|
else:
|
|
|
|
node['label'] += " (~0)"
|
|
|
|
|
|
|
|
|
|
|
|
def genAndShowHTML(G, showButtons=False):
|
|
|
|
net = Network('1080px', '1920px')
|
|
|
|
if showButtons:
|
|
|
|
net.show_buttons(filter_=['configure', 'layout',
|
|
|
|
'interaction', 'physics', 'edges'])
|
|
|
|
net.from_nx(G)
|
|
|
|
net.show('nx.html')
|
|
|
|
|
|
|
|
|
|
|
|
def buildFullGraph():
|
|
|
|
books = loadBooksFromDB()
|
|
|
|
G = buildBookGraph(books)
|
|
|
|
|
|
|
|
graphAddAuthors(G, books)
|
|
|
|
graphAddRecommenders(G, books)
|
|
|
|
graphAddTopLists(G, books)
|
|
|
|
graphAddSeries(G, books)
|
|
|
|
graphAddTags(G, books)
|
|
|
|
return G, books
|
|
|
|
|
|
|
|
|
|
|
|
def genScores(G, books):
|
|
|
|
globMu, globStd = calcRecDist(G, books)
|
|
|
|
scoreOpinions(G, globMu, globStd)
|
|
|
|
scoreUnread(G, globMu, globStd)
|
|
|
|
return globMu, globStd
|
|
|
|
|
|
|
|
|
|
|
|
def recommendNBooks(n):
|
|
|
|
G, books = buildFullGraph()
|
|
|
|
mu, std = genScores(G, books)
|
|
|
|
|
|
|
|
removeRestOfSeries(G)
|
|
|
|
removePriv(G)
|
|
|
|
removeBad(G, mu-std-1.5)
|
|
|
|
removeKeepBest(G, int(n*2) + 5, maxDistForRead=1.5)
|
|
|
|
removeEdge(G)
|
|
|
|
removeHighSpanTags(G, 9)
|
|
|
|
removeDangling(G, alsoBooks=False)
|
|
|
|
pruneTags(G, 4)
|
|
|
|
removeBad(G, mu, groups=['book'])
|
|
|
|
pruneTags(G, 3)
|
2021-06-15 13:52:41 +02:00
|
|
|
pruneRecommenderCons(G, 5)
|
2021-06-14 22:20:36 +02:00
|
|
|
removeTopLists(G)
|
|
|
|
removeDangling(G, alsoBooks=True)
|
|
|
|
removeKeepBest(G, n, maxDistForRead=0.75)
|
|
|
|
removeEdge(G)
|
|
|
|
removeDangling(G, alsoBooks=True)
|
|
|
|
|
|
|
|
scaleBooksByRating(G)
|
|
|
|
scaleOpinionsByRating(G)
|
|
|
|
addScoreToLabels(G)
|
|
|
|
|
|
|
|
printBestList(G, num=n)
|
2021-06-15 13:52:41 +02:00
|
|
|
genAndShowHTML(G, True)
|
2021-06-14 22:20:36 +02:00
|
|
|
|
|
|
|
|
|
|
|
def fullGraph():
|
|
|
|
G, books = buildFullGraph()
|
|
|
|
mu, std = genScores(G, books)
|
|
|
|
|
|
|
|
removePriv(G)
|
|
|
|
removeEdge(G)
|
|
|
|
removeHighSpanTags(G, 7)
|
|
|
|
removeDangling(G, alsoBooks=False)
|
|
|
|
removeTopLists(G)
|
|
|
|
pruneTags(G, 3)
|
|
|
|
removeDangling(G, alsoBooks=True)
|
|
|
|
|
|
|
|
scaleBooksByRating(G)
|
|
|
|
scaleOpinionsByRating(G)
|
|
|
|
addScoreToLabels(G)
|
|
|
|
|
|
|
|
printBestList(G, num=100)
|
|
|
|
genAndShowHTML(G)
|
|
|
|
|
|
|
|
|
|
|
|
def readBooksAnalysis():
|
|
|
|
G, books = buildFullGraph()
|
|
|
|
mu, std = genScores(G, books)
|
|
|
|
|
|
|
|
removePriv(G)
|
|
|
|
removeUnread(G)
|
|
|
|
removeEdge(G)
|
|
|
|
removeHighSpanTags(G, 15)
|
|
|
|
removeDangling(G, alsoBooks=False)
|
|
|
|
removeTopLists(G)
|
|
|
|
pruneTags(G, 8)
|
|
|
|
|
|
|
|
scaleBooksByRating(G)
|
|
|
|
scaleOpinionsByRating(G)
|
|
|
|
addScoreToLabels(G)
|
|
|
|
|
|
|
|
printBestList(G, num=100)
|
|
|
|
genAndShowHTML(G)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2021-06-15 13:52:41 +02:00
|
|
|
recommendNBooks(35)
|