Added a CLI-Interface and 'analyze' command
This commit is contained in:
parent
051a22b124
commit
00c72df281
155
main.py
155
main.py
@ -306,7 +306,7 @@ def scoreUnread(G, globMu, globStd, errorFac=0.6):
|
||||
node['score'] = None
|
||||
|
||||
|
||||
def printBestList(G, num=25):
|
||||
def printBestList(G, num=-1):
|
||||
bestlist = []
|
||||
for n in list(G.nodes):
|
||||
node = G.nodes[n]
|
||||
@ -317,7 +317,7 @@ def printBestList(G, num=25):
|
||||
for i, book in enumerate(bestlist):
|
||||
print("["+str(i+1).zfill(int(math.log10(num)+1))+"] "+book['title'] +
|
||||
" ("+" & ".join(book['authors'])+"): {:.5f}".format(book['score']))
|
||||
if i == num-1:
|
||||
if num!=-1 and i == num-1:
|
||||
break
|
||||
|
||||
|
||||
@ -475,12 +475,8 @@ def genScores(G, books):
|
||||
return globMu, globStd
|
||||
|
||||
|
||||
def recommendNBooks(n):
|
||||
G, books = buildFullGraph()
|
||||
mu, std = genScores(G, books)
|
||||
|
||||
def recommendNBooks(G, mu, std, n):
|
||||
removeRestOfSeries(G)
|
||||
removePriv(G)
|
||||
removeBad(G, mu-std-1.5)
|
||||
removeKeepBest(G, int(n*2) + 5, maxDistForRead=1.5)
|
||||
removeEdge(G)
|
||||
@ -501,15 +497,7 @@ def recommendNBooks(n):
|
||||
scaleOpinionsByRating(G)
|
||||
addScoreToLabels(G)
|
||||
|
||||
printBestList(G, num=n)
|
||||
genAndShowHTML(G, True)
|
||||
|
||||
|
||||
def fullGraph():
|
||||
G, books = buildFullGraph()
|
||||
mu, std = genScores(G, books)
|
||||
|
||||
removePriv(G)
|
||||
def fullGraph(G):
|
||||
removeEdge(G)
|
||||
removeHighSpanTags(G, 7)
|
||||
removeDangling(G, alsoBooks=False)
|
||||
@ -521,19 +509,14 @@ def fullGraph():
|
||||
scaleOpinionsByRating(G)
|
||||
addScoreToLabels(G)
|
||||
|
||||
printBestList(G, num=100)
|
||||
genAndShowHTML(G)
|
||||
|
||||
|
||||
def readBooksAnalysis():
|
||||
G, books = buildFullGraph()
|
||||
mu, std = genScores(G, books)
|
||||
|
||||
removePriv(G)
|
||||
def readBooksAnalysis(G, minRating=0, showAllTags=True, removeUnconnected=False):
|
||||
removeUnread(G)
|
||||
removeBad(G, minRating)
|
||||
if not showAllTags:
|
||||
removeEdge(G)
|
||||
removeHighSpanTags(G, 15)
|
||||
removeDangling(G, alsoBooks=False)
|
||||
removeDangling(G, alsoBooks=removeUnconnected)
|
||||
removeTopLists(G)
|
||||
pruneTags(G, 8)
|
||||
|
||||
@ -541,9 +524,125 @@ def readBooksAnalysis():
|
||||
scaleOpinionsByRating(G)
|
||||
addScoreToLabels(G)
|
||||
|
||||
printBestList(G, num=100)
|
||||
|
||||
def analyze(G, type_name, name, dist=2.7):
|
||||
from fuzzywuzzy import fuzz
|
||||
type_ident = type_name[0]
|
||||
full_name = type_ident + "/" + name
|
||||
bestRatio, match, n = 0, None, 0
|
||||
for ni in list(G.nodes):
|
||||
node = G.nodes[ni]
|
||||
if node['t'] == type_name or type_name=="any":
|
||||
if name==node['label'] or full_name==node['label']:
|
||||
match, n = node, ni
|
||||
break
|
||||
ratio = fuzz.ratio(node['label'], name)
|
||||
if ratio > bestRatio:
|
||||
bestRatio, match, n = ratio, node, ni
|
||||
menge = set()
|
||||
pruneDist(G, match, n, dist, menge)
|
||||
for n in list(G.nodes):
|
||||
if n not in menge:
|
||||
G.remove_node(n)
|
||||
removeHighSpanTags(G, 12)
|
||||
if dist > 1:
|
||||
removeDangling(G, True)
|
||||
|
||||
scaleBooksByRating(G)
|
||||
scaleOpinionsByRating(G)
|
||||
match['value'] += 100
|
||||
addScoreToLabels(G)
|
||||
|
||||
def pruneDist(G, node, n, dist, menge, firstEdge=False):
|
||||
if dist <= 0:
|
||||
return
|
||||
dist -= 1
|
||||
if menge==set():
|
||||
firstEdge=True
|
||||
menge.add(n)
|
||||
if node['t'] in ['tag']:
|
||||
if firstEdge:
|
||||
dist-=0.1
|
||||
else:
|
||||
return
|
||||
bestlist = []
|
||||
keeplist = []
|
||||
for m in list(G.adj[n]):
|
||||
book = G.nodes[m]
|
||||
if book['t'] not in ['topList']:
|
||||
if 'score' in book and book['score'] != None:
|
||||
bestlist.append(book)
|
||||
elif 'rating' in book and book['rating'] != None:
|
||||
keeplist.append(book)
|
||||
else:
|
||||
book['score'] = 0
|
||||
bestlist.append(book)
|
||||
bestlist.sort(key=lambda node: node['score'], reverse=True)
|
||||
toKeep = min(int(dist*10), math.ceil(len(bestlist) * dist - len(keeplist)*0.5))
|
||||
if toKeep <= 0:
|
||||
keeplist.sort(key=lambda node: node['rating'], reverse=True)
|
||||
keeplist = keeplist[:min(int(dist*10), int(len(keeplist) * dist))]
|
||||
bestlist = []
|
||||
else:
|
||||
bestlist = bestlist[:toKeep]
|
||||
|
||||
for m in list(G.adj[n]):
|
||||
node = G.nodes[m]
|
||||
if node in bestlist or node in keeplist:
|
||||
pruneDist(G, node, m, dist, menge, firstEdge=firstEdge)
|
||||
|
||||
def cliInterface():
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description='TODO: Write Description.')
|
||||
parser.add_argument('--keep-priv', action="store_true")
|
||||
parser.add_argument('--remove-read', action="store_true")
|
||||
parser.add_argument('--remove-unread', action="store_true")
|
||||
parser.add_argument('--no-web', action="store_true")
|
||||
parser.add_argument('--no-list', action="store_true")
|
||||
cmds = parser.add_subparsers(required=True, dest='cmd')
|
||||
|
||||
p_rec = cmds.add_parser('recommend', description="TODO", aliases=['rec'])
|
||||
p_rec.add_argument('-n', type=int, default=25, help='number of books to recommend')
|
||||
|
||||
p_read = cmds.add_parser('read', description="TODO", aliases=[])
|
||||
p_read.add_argument('--min-rating', type=int, default=0)
|
||||
p_read.add_argument('--all-tags', action="store_true")
|
||||
p_read.add_argument('--only-connected', action="store_true")
|
||||
|
||||
p_show = cmds.add_parser('analyze', description="TODO", aliases=[])
|
||||
p_show.add_argument('type', choices=['any', 'book', 'recommender', 'author', 'series'])
|
||||
p_show.add_argument('name', type=str)
|
||||
p_show.add_argument('-d', type=float, default=2.7, help='depth of expansion')
|
||||
|
||||
p_full = cmds.add_parser('full', description="TODO", aliases=[])
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
G, books = buildFullGraph()
|
||||
mu, std = genScores(G, books)
|
||||
if not args.keep_priv:
|
||||
removePriv(G)
|
||||
if args.remove_read:
|
||||
removeRead(G)
|
||||
elif args.remove_unread:
|
||||
removeUnread(G)
|
||||
|
||||
if args.cmd=="recommend":
|
||||
recommendNBooks(G, mu, std, args.n)
|
||||
elif args.cmd=="read":
|
||||
readBooksAnalysis(G, args.min_rating, args.all_tags, args.only_connected)
|
||||
elif args.cmd=="analyze":
|
||||
analyze(G, args.type, args.name, args.d)
|
||||
elif args.cmd=="full":
|
||||
fullGraph(G)
|
||||
else:
|
||||
raise Exception("Bad")
|
||||
|
||||
if not args.no_list:
|
||||
printBestList(G)
|
||||
if not args.no_web:
|
||||
genAndShowHTML(G)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
recommendNBooks(45)
|
||||
cliInterface()
|
||||
|
Loading…
Reference in New Issue
Block a user