From 0231d97a42cd66e17ed1c79b50312a2a6749f3dd Mon Sep 17 00:00:00 2001 From: Dominik Roth Date: Fri, 24 Sep 2021 14:49:59 +0200 Subject: [PATCH] Switched to a simpler bayesian model for score generation --- caliGraph.py | 52 ++++++++++++++++++++++------------------------------ 1 file changed, 22 insertions(+), 30 deletions(-) diff --git a/caliGraph.py b/caliGraph.py index fbd39d3..740ae05 100755 --- a/caliGraph.py +++ b/caliGraph.py @@ -294,7 +294,7 @@ def removeUselessReadBooks(G): else: # No unrated book in cousins G.remove_node(n) -def scoreOpinions(G, globMu, globStd, errorFac=0.5): +def scoreOpinions(G, globMu, globStd, errorFac=-0.5): for n in list(G.nodes): node = G.nodes[n] feedbacks = [] @@ -308,7 +308,7 @@ def scoreOpinions(G, globMu, globStd, errorFac=0.5): node['mean'], node['std'] = norm.fit(feedbacks) node['se'] = globStd / math.sqrt(len(feedbacks)) ratio = len(feedbacks) / len(adjacens) - node['score'] = node['mean'] - errorFac * \ + node['score'] = node['mean'] + errorFac * \ node['se']*(6/7 + (1-ratio)/7) + 0.01 * \ (node['t'] == 'recommender') \ - 0.5 / len(feedbacks)**2 @@ -316,12 +316,10 @@ def scoreOpinions(G, globMu, globStd, errorFac=0.5): else: node['score'] = None - -def scoreUnread(G, globMu, globStd, errorFac=0.6): +def scoreUnread(G, globMu, globStd, errorFac=-0.6): for n in list(G.nodes): - feedbacks = [] - deepFeedbacks = [globMu - globStd*0.5] - deepLen = 1 + feedbacks = [globMu] + wheights = [getWheightForType('mu')] node = G.nodes[n] if node['t'] == 'book': if node['rating'] == None: @@ -329,33 +327,27 @@ def scoreUnread(G, globMu, globStd, errorFac=0.6): for adj in adjacens: adjNode = G.nodes[adj] if 'score' in adjNode and adjNode['score'] != None: - if adjNode['t'] == 'tag': - w = int(10/(len(G.adj[adj]))) - elif adjNode['t'] == 'topList': - w = int(G[n][adj]['wheight']*5) - else: - w = 10 - feedbacks.append(adjNode['score']) + w = getWheightForType(adjNode['t'], G[n][adj]['wheight'] if 'wheight' in G[n][adj] else None) for fb in adjNode['feedbacks']: - for i in range(w): - deepFeedbacks.append(fb) - deepLen += w + feedbacks.append(fb) + wheights.append(w) if len(feedbacks): - node['mean'], node['std'] = norm.fit(deepFeedbacks) - node['mean2'], node['std2'] = norm.fit(feedbacks) - if deepLen: - node['se'] = globStd / math.sqrt(deepLen) - # - errorFac*node['se'] - node['score'] = ( - (node['mean'] - errorFac*node['se'])*3 + node['mean2']*2)/5 - else: - node['score'] = globMu - errorFac*globStd - if 'series' in node: - if node['series_index'] == 1.0: - node['score'] += 0.000000001 + node['meanUnweighted'], node['std'] = norm.fit(feedbacks) + node['mean'] = sum([fb*w for fb, w in zip(feedbacks, wheights)])/len(feedbacks) + node['se'] = globStd / math.sqrt(len(feedbacks)) + node['score'] = node['mean'] + errorFac*node['se'] else: - node['score'] = None + node['score'] = globMu + errorFac*globStd + len(feedbacks)*0.0000000001 + if 'series' in node: + if node['series_index'] == 1.0: + node['score'] += 0.000000001 +# TODO: Make this neural and train it +def getWheightForType(nodeType, edgeWheight=None): + if nodeType == 'topList': + return edgeWheight*0.5 + else: + return 1.0 def printBestList(G, num=-1): bestlist = []