From 0fbc9d77294749ac099fd75128b7f67e74fd8c21 Mon Sep 17 00:00:00 2001 From: Dominik Roth Date: Wed, 13 Oct 2021 15:43:11 +0200 Subject: [PATCH] WIP --- caliGraph.py | 17 ++++++++++++++++- neuralWeights.json | 2 +- 2 files changed, 17 insertions(+), 2 deletions(-) diff --git a/caliGraph.py b/caliGraph.py index 1c9cedd..aa89228 100755 --- a/caliGraph.py +++ b/caliGraph.py @@ -378,6 +378,9 @@ def scoreUnread(G, globMu, globStd): if node['t'] == 'book': if node['rating'] == None: adjacens = list(G.adj[n].keys()) + cats = {} + for cat in weights.keys(): + cats[cat] = [] for adj in adjacens: adjNode = G.nodes[adj] if 'score' in adjNode and adjNode['score'] != None: @@ -385,6 +388,7 @@ def scoreUnread(G, globMu, globStd): for fb in adjNode['feedbacks']: feedbacks.append(fb) ws.append(w) + cats[adjNode['t']].append(fb) if len(feedbacks): node['mean'], node['std'] = norm.fit(feedbacks) node['se'] = globStd / math.sqrt(len(feedbacks)) @@ -394,7 +398,18 @@ def scoreUnread(G, globMu, globStd): ws.append(['se']) feedbacks.append(globMu) ws.append(['bias']) - node['score'] = sum([fb*getWeightForType(w[0], w[1] if len(w)>1 else 1) for fb, w in zip(feedbacks, ws)])/sum([getWeightForType(w[0], w[1] if len(w)>1 else 1) for w in ws]) + linScore = sum([fb*getWeightForType(w[0], w[1] if len(w)>1 else 1) for fb, w in zip(feedbacks, ws)])/sum([getWeightForType(w[0], w[1] if len(w)>1 else 1) for w in ws]) + catWeightSum = sum([getWeightForType(c, 1) if cats[c] != [globMu] else 0 for c in weights]) + catScores = [(sum(cats[c])/len(cats[c])) * getWeightForType(c, 1) for c in cats if len(cats[c])] + if len(catScores): + normScore = sum(catScores)/len(catScores) + else: + normScore = globMu + #print(catScores) + #print(linScore, normScore) + normF = getWeightForType('norm', 1) + normF = 1 + node['score'] = linScore * (1-normF) + normScore * normF node['_act'] = feedbacks node['_wgh'] = ws else: diff --git a/neuralWeights.json b/neuralWeights.json index 17d952a..2d0c70d 100644 --- a/neuralWeights.json +++ b/neuralWeights.json @@ -1 +1 @@ -{"topList": 0.8269026935523768, "recommender": 0.5687397308864482, "author": 0.9602300111040548, "series": 0.0015315822252870478, "tag": 0.0028789924118737056, "mu": 0.48730278196967397, "sigma": 0.02394878388858184, "se": 0.45207554705083647, "bias": 0.555294008129175} \ No newline at end of file +{"topList": 0.6813597954924836, "recommender": 0.7373820050627435, "author": 0.9322587113850848, "series": 0.9256656037821412, "tag": 0.9917141164721258, "mu": 0.5619155530016923, "sigma": 0.05411831944351521, "se": 0.6823826056339866, "bias": 0.7987740969341441, "norm": 0.9443733783393993} \ No newline at end of file