Stronger regression-loss; more parameter-freedome
This commit is contained in:
parent
22ca039502
commit
212a30298a
@ -705,7 +705,7 @@ def evaluateFitness(books):
|
||||
errSq[-1] *= 1.5
|
||||
G.nodes[m]['rating'] = rating
|
||||
regressionLoss = sum([(1-w)**2 for w in weights.values()])
|
||||
return sum(errSq)/len(errSq) + regressionLoss/1000
|
||||
return sum(errSq)/len(errSq) + regressionLoss/100
|
||||
|
||||
def train(gamma = 0.1):
|
||||
global weights
|
||||
@ -726,7 +726,7 @@ def train(gamma = 0.1):
|
||||
else:
|
||||
weights[attr] += delta
|
||||
if attr not in ['sigma', 'mu', 'se']:
|
||||
weights[attr] = min(max(0.0, weights[attr]), 3.0)
|
||||
weights[attr] = min(max(0.0, weights[attr]), 5.0)
|
||||
mse = evaluateFitness(books)
|
||||
if mse < best_mse: # got better
|
||||
saveWeights(weights)
|
||||
|
Loading…
Reference in New Issue
Block a user