Approximate Pagerank while training (+performance) and implemented
batch-training (disabled do to non-convergence)
This commit is contained in:
parent
aa2e5a41bb
commit
5a229a4b2b
14
caliGraph.py
14
caliGraph.py
@ -640,8 +640,9 @@ def buildFullGraph(darkMode=False):
|
|||||||
return G, books
|
return G, books
|
||||||
|
|
||||||
|
|
||||||
def genScores(G, books):
|
def genScores(G, books, calcPagerank=True):
|
||||||
globMu, globStd = calcRecDist(G, books)
|
globMu, globStd = calcRecDist(G, books)
|
||||||
|
if calcPagerank:
|
||||||
runPagerank(G)
|
runPagerank(G)
|
||||||
scoreOpinions(G, globMu, globStd)
|
scoreOpinions(G, globMu, globStd)
|
||||||
scoreUnread(G, globMu, globStd)
|
scoreUnread(G, globMu, globStd)
|
||||||
@ -906,7 +907,10 @@ def shell(G, books, mu, std):
|
|||||||
from ptpython.repl import embed
|
from ptpython.repl import embed
|
||||||
embed(globals(), locals())
|
embed(globals(), locals())
|
||||||
|
|
||||||
def evaluateFitness(books, debugPrint=False):
|
# while batchSize is implemented, we only get a good gonvergence when we disable it (batchSize=-1)
|
||||||
|
# but might be necessary to enable later for a larger libary for better training performance...
|
||||||
|
# maybe try again for 128 books?
|
||||||
|
def evaluateFitness(books, batchSize=-1, debugPrint=False):
|
||||||
global weights
|
global weights
|
||||||
G = buildBookGraph(books)
|
G = buildBookGraph(books)
|
||||||
graphAddAuthors(G, books)
|
graphAddAuthors(G, books)
|
||||||
@ -914,6 +918,7 @@ def evaluateFitness(books, debugPrint=False):
|
|||||||
graphAddTopLists(G, books)
|
graphAddTopLists(G, books)
|
||||||
graphAddSeries(G, books)
|
graphAddSeries(G, books)
|
||||||
graphAddTags(G, books)
|
graphAddTags(G, books)
|
||||||
|
runPagerank(G)
|
||||||
|
|
||||||
ratedBooks = [n for n in list(G.nodes) if 'rating' in G.nodes[n] and G.nodes[n]['rating'] != None]
|
ratedBooks = [n for n in list(G.nodes) if 'rating' in G.nodes[n] and G.nodes[n]['rating'] != None]
|
||||||
boundsLoss = 0
|
boundsLoss = 0
|
||||||
@ -924,10 +929,11 @@ def evaluateFitness(books, debugPrint=False):
|
|||||||
gradient[wt] = 0
|
gradient[wt] = 0
|
||||||
mu, sigma = genScores(G, books)
|
mu, sigma = genScores(G, books)
|
||||||
for b in G.nodes:
|
for b in G.nodes:
|
||||||
if b in ratedBooks:
|
batch = random.sample(ratedBooks, batchSize) if batchSize!=-1 and len(ratedBooks) > batchSize else ratedBooks
|
||||||
|
if b in batch:
|
||||||
rating = G.nodes[b]['rating']
|
rating = G.nodes[b]['rating']
|
||||||
G.nodes[b]['rating'] = None
|
G.nodes[b]['rating'] = None
|
||||||
_, _ = genScores(G, books)
|
_, _ = genScores(G, books, calcPagerank=False)
|
||||||
if G.nodes[b]['score'] > rating: # over estimated
|
if G.nodes[b]['score'] > rating: # over estimated
|
||||||
errSq.append(((rating - G.nodes[b]['score'])**2)*2)
|
errSq.append(((rating - G.nodes[b]['score'])**2)*2)
|
||||||
else:
|
else:
|
||||||
|
@ -1 +1 @@
|
|||||||
{"topList": 0.6242390366079424, "recommender": 0.19944547091869327, "author": 0.5538234948661109, "series": 0.3459804141050738, "tag": 0.014690671910647879, "pagerank": 0.19122234015715153, "mu": 0.6727738107799146, "sigma": 0.6261661745577459, "bias": 0.10501847188587837}
|
{"topList": 0.5830829472833505, "recommender": 0.1853397829569056, "author": 0.68263573164139, "series": 0.3041545091933662, "tag": 0.007576290358844896, "pagerank": 0.07216203473617633, "mu": 0.8203785554750931, "sigma": 0.5483459224046601, "bias": 0.1280901837325877}
|
Loading…
Reference in New Issue
Block a user