Added a regression-loss (push weights towards 1)
This commit is contained in:
parent
9d6f37af45
commit
5a4e48d86c
22
caliGraph.py
22
caliGraph.py
@ -341,7 +341,7 @@ def scoreOpinions(G, globMu, globStd):
|
||||
def scoreUnread(G, globMu, globStd):
|
||||
for n in list(G.nodes):
|
||||
feedbacks = [globMu]
|
||||
weights = [getWeightForType('mu')]
|
||||
ws = [getWeightForType('mu')]
|
||||
node = G.nodes[n]
|
||||
if node['t'] == 'book':
|
||||
if node['rating'] == None:
|
||||
@ -352,16 +352,16 @@ def scoreUnread(G, globMu, globStd):
|
||||
w = getWeightForType(adjNode['t'], G[n][adj]['weight'] if 'weight' in G[n][adj] else 1)
|
||||
for fb in adjNode['feedbacks']:
|
||||
feedbacks.append(fb)
|
||||
weights.append(w)
|
||||
ws.append(w)
|
||||
if len(feedbacks):
|
||||
node['mean'], node['std'] = norm.fit(feedbacks)
|
||||
node['se'] = globStd / math.sqrt(len(feedbacks))
|
||||
feedbacks.append(node['std'])
|
||||
weights.append(getWeightForType('sigma'))
|
||||
ws.append(getWeightForType('sigma'))
|
||||
feedbacks.append(node['se'])
|
||||
weights.append(getWeightForType('se'))
|
||||
node['score'] = sum([fb*w for fb, w in zip(feedbacks, weights)])/len(feedbacks)
|
||||
#node['score'] = sum([fb*w for fb, w in zip(feedbacks, weights)])/sum(weights)
|
||||
ws.append(getWeightForType('se'))
|
||||
#node['score'] = sum([fb*w for fb, w in zip(feedbacks, weights)])/len(feedbacks)
|
||||
node['score'] = sum([fb*w for fb, w in zip(feedbacks, ws)])/len(feedbacks)
|
||||
else:
|
||||
node['score'] = globMu + errorFac*globStd + len(feedbacks)*0.0000000001
|
||||
if 'series' in node:
|
||||
@ -683,6 +683,7 @@ def waveFlow(G, node, n, dist, menge, firstEdge=False):
|
||||
waveFlow(G, node, m, dist, menge, firstEdge=firstEdge)
|
||||
|
||||
def evaluateFitness(books):
|
||||
global weights
|
||||
G = buildBookGraph(books)
|
||||
graphAddAuthors(G, books)
|
||||
graphAddRecommenders(G, books)
|
||||
@ -703,7 +704,8 @@ def evaluateFitness(books):
|
||||
if rating > 10.0:
|
||||
errSq[-1] *= 1.5
|
||||
G.nodes[m]['rating'] = rating
|
||||
return sum(errSq) / len(errSq)
|
||||
regressionLoss = sum([(1-w)**2 for w in weights.values()])
|
||||
return sum(errSq)/len(errSq) + regressionLoss/1000
|
||||
|
||||
def train(gamma = 0.1):
|
||||
global weights
|
||||
@ -720,15 +722,15 @@ def train(gamma = 0.1):
|
||||
if gamma < 0.01:
|
||||
while random.random() < 0.5:
|
||||
attr = random.choice(w)
|
||||
weights[attr] = -0.1+random.random()*1.5
|
||||
weights[attr] = -0.1+random.random()*1.5+random.random()
|
||||
else:
|
||||
weights[attr] += delta
|
||||
if attr not in ['sigma', 'mu', 'se']:
|
||||
weights[attr] = min(max(0, weights[attr]), 3)
|
||||
weights[attr] = min(max(0.0, weights[attr]), 3.0)
|
||||
mse = evaluateFitness(books)
|
||||
if mse < best_mse: # got better
|
||||
saveWeights(weights)
|
||||
gamma = max(gamma*1.75, 0.001)
|
||||
gamma = min(max(gamma*1.75, 0.001), 0.5)
|
||||
bestWeights = copy.copy(weights)
|
||||
best_mse = mse
|
||||
delta *= 2
|
||||
|
Loading…
Reference in New Issue
Block a user