Small tweaks to the scroring-algo and less calls to calibre when
training
This commit is contained in:
parent
54f82c024e
commit
9318811d8a
40
caliGraph.py
40
caliGraph.py
@ -316,7 +316,7 @@ def scoreOpinions(G, globMu, globStd, errorFac=0):
|
||||
for n in list(G.nodes):
|
||||
node = G.nodes[n]
|
||||
feedbacks = []
|
||||
if node['t'] in ['topList', 'recommender', 'author', 'series', 'tag']:
|
||||
if node['t'] not in ['book']:
|
||||
adjacens = list(G.adj[n].keys())
|
||||
for adj in adjacens:
|
||||
adjNode = G.nodes[adj]
|
||||
@ -351,10 +351,12 @@ def scoreUnread(G, globMu, globStd, errorFac=-0.6):
|
||||
weights.append(w)
|
||||
if len(feedbacks):
|
||||
node['meanUnweighted'], node['std'] = norm.fit(feedbacks)
|
||||
node['se'] = globStd / math.sqrt(len(feedbacks))
|
||||
feedbacks.append(node['std'])
|
||||
weights.append(getWeightForType('sigma'))
|
||||
feedbacks.append(1-1/len(feedbacks))
|
||||
weights.append(getWeightForType('stability'))
|
||||
node['mean'] = sum([fb*w for fb, w in zip(feedbacks, weights)])/len(feedbacks)
|
||||
node['se'] = globStd / math.sqrt(len(feedbacks))
|
||||
node['score'] = node['mean'] + errorFac*node['se']
|
||||
else:
|
||||
node['score'] = globMu + errorFac*globStd + len(feedbacks)*0.0000000001
|
||||
@ -507,9 +509,9 @@ def addScoreToLabels(G):
|
||||
node['label'] += " ("+str(node['rating'])+")"
|
||||
else:
|
||||
if 'score' in node and node['score'] != None:
|
||||
node['label'] += " (~{:.2f}".format(node['score'])+")"
|
||||
node['label'] += " (~{:.2f}±{:.2f})".format(node['score'], node['std'])
|
||||
else:
|
||||
node['label'] += " (~0)"
|
||||
node['label'] += " (~0±∞)"
|
||||
|
||||
|
||||
def genAndShowHTML(G, showButtons=False):
|
||||
@ -674,8 +676,14 @@ def waveFlow(G, node, n, dist, menge, firstEdge=False):
|
||||
if node in bestlist or node in keeplist:
|
||||
waveFlow(G, node, m, dist, menge, firstEdge=firstEdge)
|
||||
|
||||
def evaluateFitness():
|
||||
G, books = buildFullGraph()
|
||||
def evaluateFitness(books):
|
||||
G = buildBookGraph(books)
|
||||
graphAddAuthors(G, books)
|
||||
graphAddRecommenders(G, books)
|
||||
graphAddTopLists(G, books)
|
||||
graphAddSeries(G, books)
|
||||
graphAddTags(G, books)
|
||||
|
||||
ratedBooks = [n for n in list(G.nodes) if 'rating' in G.nodes[n] and G.nodes[n]['rating'] != None]
|
||||
errSq = []
|
||||
for m in ratedBooks:
|
||||
@ -691,26 +699,28 @@ def evaluateFitness():
|
||||
|
||||
def train(gamma = 0.1):
|
||||
global weights
|
||||
books = loadBooksFromDB()
|
||||
bestWeights = copy.copy(weights)
|
||||
best_mse = evaluateFitness()
|
||||
best_mse = evaluateFitness(books)
|
||||
w = list(weights.keys())
|
||||
attr = random.choice(w)
|
||||
delta = gamma * (-0.5 + (0.75 + 0.25*random.random()))
|
||||
|
||||
while True:
|
||||
while gamma > 1.0e-08:
|
||||
print({'mse': best_mse, 'w': weights, 'gamma': gamma})
|
||||
weights = copy.copy(bestWeights)
|
||||
if gamma < 0.01 and random.random() < 0.5:
|
||||
gamma = 0.01
|
||||
weights[attr] = -1+random.random()*2
|
||||
if gamma < 0.01:
|
||||
while random.random() < 0.5:
|
||||
attr = random.choice(w)
|
||||
weights[attr] = -0.1+random.random()*1.5
|
||||
else:
|
||||
weights[attr] += delta
|
||||
if attr not in ['sigma, mu']:
|
||||
weights[attr] = min(max(0, weight[attr]), 1.5)
|
||||
mse = evaluateFitness()
|
||||
if attr not in ['sigma', 'mu', 'stability']:
|
||||
weights[attr] = min(max(0, weights[attr]), 3)
|
||||
mse = evaluateFitness(books)
|
||||
if mse < best_mse: # got better
|
||||
saveWeights(weights)
|
||||
gamma *= 1.75
|
||||
gamma = max(gamma*1.75, 0.001)
|
||||
bestWeights = copy.copy(weights)
|
||||
best_mse = mse
|
||||
delta *= 2
|
||||
|
Loading…
Reference in New Issue
Block a user