From 93230c42852cf327691fc01d520ce7bd03dd32d5 Mon Sep 17 00:00:00 2001 From: Dominik Roth Date: Mon, 7 Feb 2022 19:57:03 +0100 Subject: [PATCH] Simpler and faster training --- caliGraph.py | 21 +++++++++------------ 1 file changed, 9 insertions(+), 12 deletions(-) diff --git a/caliGraph.py b/caliGraph.py index dbbf3b6..b10961f 100755 --- a/caliGraph.py +++ b/caliGraph.py @@ -1058,20 +1058,17 @@ def evaluateFitness(books, batchSize=-1, debugPrint=False): for wt in weights: scoreB = sum([a*(1.001 if wt==w[0] else 1)*weights[w[0]]*(w[1] if len(w)>1 else 1) for a,w in zip(G.nodes[b]['_act'], G.nodes[b]['_wgh'])])/sum([(1.001 if wt==w[0] else 1)*weights[w[0]]*(w[1] if len(w)>1 else 1) for w in G.nodes[b]['_wgh']]) gradient[wt] += ((rating - G.nodes[b]['score'])**2 - (rating - scoreB)**2)*1000 - if 'score' in G.nodes[b] and G.nodes[b]['score'] != None: - score = G.nodes[b]['score'] - if score > 10.0: - boundsLoss += (score - 10)**2 - elif score < 0.0: - boundsLoss += (score)**2 - # reward seperation linearly - linSepLoss.append(abs(score - mu)) - regressionLoss = sum([(1-w)**2 for w in weights.values()]) + regressionLoss = sum([max(0,abs(w)-1)**2 for w in weights.values()]) # no punishment if w within -1 and 1 + for wt in weights: + if abs(weights[wt]) > 1.0: + gradient[wt] -= weights[wt]*10 + else: + gradient[wt] -= weights[wt]*1 for g in gradient: gradient[g] /= len(errSq) if debugPrint: - print(sum(errSq)/len(errSq), 0.001*regressionLoss, 0.1*boundsLoss/len(ratedBooks), 0.5*sum(linSepLoss)/len(linSepLoss)) - fit = sum(errSq)/len(errSq) + 0.001*regressionLoss + 0.1*boundsLoss/len(ratedBooks) - 0.5*sum(linSepLoss)/len(linSepLoss) + print(sum(errSq)/len(errSq), 0.001*regressionLoss) + fit = sum(errSq)/len(errSq) + 0.001*regressionLoss return fit, gradient def train(initGamma, full=True): @@ -1171,7 +1168,7 @@ def cliInterface(): p_show.add_argument('-d', type=float, default=2.1, help='depth of expansion') p_train = cmds.add_parser('train', description="TODO", aliases=[]) - p_train.add_argument('-g', type=float, default=0.1, help='learning rate gamma') + p_train.add_argument('-g', type=float, default=0.2, help='learning rate gamma') p_train.add_argument('--full', action="store_true") p_prog = cmds.add_parser('progress', description="TODO", aliases=[])