'analyze' also finds newBooks
This commit is contained in:
parent
08fb19c6b9
commit
bcec24fbf7
22
caliGraph.py
22
caliGraph.py
@ -799,7 +799,7 @@ def addImageToNode(node, cache, shape='circularImage'):
|
||||
else:
|
||||
img = cache[name]
|
||||
if img:
|
||||
node['imagePadding'] = '100px'
|
||||
#node['imagePadding'] = '100px'
|
||||
node['image']=img
|
||||
node['shape']=shape
|
||||
|
||||
@ -992,7 +992,7 @@ def progress(G, minimum=3.5):
|
||||
print('Progress: '+str(perc)+'%')
|
||||
|
||||
|
||||
def analyze(G, type_name, name, dist=2.1):
|
||||
def analyze(G, books, type_name, name, dist=2.1):
|
||||
from fuzzywuzzy import fuzz
|
||||
type_ident = type_name[0]
|
||||
full_name = type_ident + "/" + name
|
||||
@ -1009,6 +1009,8 @@ def analyze(G, type_name, name, dist=2.1):
|
||||
if bestRatio < 70:
|
||||
print("Best Match: "+match['label'])
|
||||
|
||||
findNewBooks(G, books, num=-1, minRecSco=1)
|
||||
|
||||
menge = set()
|
||||
waveFlow(G, match, n, dist, menge)
|
||||
for n in list(G.nodes):
|
||||
@ -1093,6 +1095,7 @@ def shell(G, books, mu, std):
|
||||
|
||||
def newBooks(G, books, num, mu, std):
|
||||
removeBad(G, mu-std*2)
|
||||
removeThinRecs(G, 2)
|
||||
findNewBooks(G, books, num, minRecSco = mu-std)
|
||||
removeUnread(G)
|
||||
removeUselessReadBooks(G)
|
||||
@ -1107,9 +1110,7 @@ def newBooks(G, books, num, mu, std):
|
||||
addScoreToLabels(G)
|
||||
|
||||
|
||||
def findNewBooks(G, books, num, minRecSco=5):
|
||||
removeBad(G, 0.1, groups=['recommender'])
|
||||
removeThinRecs(G, 2)
|
||||
def findNewBooks(G, books, num=-1, minRecSco=5):
|
||||
mrbdf = pd.read_csv('mrb_db.csv')
|
||||
recs = []
|
||||
for n in list(G.nodes):
|
||||
@ -1140,13 +1141,13 @@ def findNewBooks(G, books, num, minRecSco=5):
|
||||
scores = []
|
||||
for m in list(G.adj[n]):
|
||||
adj = G.nodes[m]
|
||||
if adj['t'] == 'recommender':
|
||||
if adj['t'] == 'recommender' and adj['score']!=None:
|
||||
scores.append(adj['score'])
|
||||
ses.append(adj['se'])
|
||||
ses.append(min(ses))
|
||||
if False and len(scores) < 2:
|
||||
if not len(scores):
|
||||
G.remove_node(n)
|
||||
else:
|
||||
ses.append(min(ses))
|
||||
node['fake_se'] = sum(ses)/(len(ses)**1.2) + 0.5 + 0.5 * (len(scores)==1) # This is not how SE works. DILLIGAF?
|
||||
node['score'] = sum(scores)/len(scores)*1.2 - node['fake_se']*2 + 0.5 - 0.1/math.sqrt(len(scores))
|
||||
if len(scores)==1:
|
||||
@ -1154,7 +1155,8 @@ def findNewBooks(G, books, num, minRecSco=5):
|
||||
node['value'] = 20 + 5 * float(node['score'])
|
||||
node['label'] += " ({:.2f}±{:.1f})".format(node['score'], node['fake_se'])
|
||||
node['label'] += '\n ' + node['author']
|
||||
removeKeepBest(G, num, 10, 'newBook')
|
||||
if num!=-1:
|
||||
removeKeepBest(G, num, 10, 'newBook')
|
||||
|
||||
# while batchSize is implemented, we only get a good gonvergence when we disable it (batchSize=-1)
|
||||
# but might be necessary to enable later for a larger libary for better training performance...
|
||||
@ -1354,7 +1356,7 @@ def cliInterface():
|
||||
elif args.cmd=="read":
|
||||
readBooksAnalysis(G, args.min_rating, args.all_tags, args.only_connected, not args.keep_top_lists)
|
||||
elif args.cmd=="analyze":
|
||||
analyze(G, args.type, args.name, args.d)
|
||||
analyze(G, books, args.type, args.name, args.d)
|
||||
elif args.cmd=="full":
|
||||
fullGraph(G, not args.keep_top_lists)
|
||||
elif args.cmd=="competence":
|
||||
|
Loading…
Reference in New Issue
Block a user