GNTM gucken
This commit is contained in:
parent
85c800d39e
commit
e87288a927
@ -817,9 +817,9 @@ def genScores(G, books, calcPagerank=True):
|
||||
globMu, globStd = calcRecDist(G, books)
|
||||
if calcPagerank:
|
||||
runPagerank(G)
|
||||
genGprScores(G, globMu, globStd)
|
||||
scoreOpinions(G, globMu, globStd)
|
||||
scoreUnread(G, globMu, globStd)
|
||||
genGprScores(G, globMu, globStd, 'score', 'std')
|
||||
#scoreOpinions(G, globMu, globStd)
|
||||
#scoreUnread(G, globMu, globStd)
|
||||
return globMu, globStd
|
||||
|
||||
def addImageToNode(node, cache, shape='circularImage'):
|
||||
|
47
py/gp.py
47
py/gp.py
@ -8,17 +8,17 @@ from sklearn.gaussian_process import GaussianProcessRegressor
|
||||
from sklearn.base import clone
|
||||
|
||||
class BookKernel(GenericKernelMixin, Kernel):
|
||||
def __init__(self, G):
|
||||
self.baseline_similarity = 0.5
|
||||
self.baseline_similarity_bounds = (1e-5, 1)
|
||||
|
||||
self.G = G
|
||||
self.node2vec = Node2Vec(self.G, dimensions=32, walk_length=16, num_walks=256, workers=8)
|
||||
self.model = self.node2vec.fit(window=10, min_count=1, batch_words=4)
|
||||
self.wv = self.model.wv
|
||||
def __init__(self, wv):
|
||||
self.wv = wv
|
||||
|
||||
def _f(self, s1, s2):
|
||||
return self.wv.similarity(s1, s2)
|
||||
"""
|
||||
kernel value between a pair of sequences
|
||||
"""
|
||||
s = self.wv.similarity(s1, s2)**2*0.99 + 0.01
|
||||
if s <= 0:
|
||||
print('bad!')
|
||||
return s
|
||||
|
||||
def __call__(self, X, Y=None, eval_gradient=False):
|
||||
if Y is None:
|
||||
@ -26,10 +26,11 @@ class BookKernel(GenericKernelMixin, Kernel):
|
||||
|
||||
if eval_gradient:
|
||||
return (
|
||||
np.array([[self._f(x, y) for y in Y] for x in X]),
|
||||
np.array([[self._f(x, y) for y in Y] for x in X])
|
||||
)
|
||||
else:
|
||||
return np.array([[self._f(x, y) for y in Y] for x in X])
|
||||
#return np.array(self.wv.n_similarity(X, Y))
|
||||
|
||||
def diag(self, X):
|
||||
return self(X)
|
||||
@ -43,22 +44,32 @@ class BookKernel(GenericKernelMixin, Kernel):
|
||||
return cloned
|
||||
|
||||
def genGprScores(G, globMu, globStd, scoreName='gpr_score', stdName='gpr_std'):
|
||||
gpr = GaussianProcessRegressor(kernel=BookKernel(G), random_state=3141)
|
||||
print('[\] Constructing Vectorizer')
|
||||
node2vec = Node2Vec(G, dimensions=32, walk_length=16, num_walks=128, workers=8)
|
||||
print('[\] Fitting Embeddings for Kernel')
|
||||
model = node2vec.fit(window=8, min_count=1, batch_words=4)
|
||||
wv = model.wv
|
||||
print('[\] Constructing Kernel')
|
||||
kernel = BookKernel(wv)
|
||||
X, y = [], []
|
||||
for n in G.nodes:
|
||||
node = G.nodes[n]
|
||||
if node['rating']!=None:
|
||||
if 'rating' in node and node['rating']!=None:
|
||||
X.append(n)
|
||||
y.append(node['rating'])
|
||||
gpr.fit(X, y)
|
||||
print('[\] Fitting GP')
|
||||
gpr = GaussianProcessRegressor(kernel=kernel, random_state=3141, alpha=1e-8).fit(X, y)
|
||||
X = []
|
||||
for n in G.nodes:
|
||||
node = G.nodes[n]
|
||||
if node['rating']==None:
|
||||
if 'rating' in node and node['rating']==None:
|
||||
X.append(n)
|
||||
y,stds = gpr.predict(X, return_std=True)
|
||||
print('[\] Inferencing GP')
|
||||
y, stds = gpr.predict(X, return_std=True)
|
||||
i=0
|
||||
for n in G.nodes:
|
||||
node = G.nodes[n]
|
||||
if node['rating']==None:
|
||||
y, std = y.pop(0), stds.pop(0)
|
||||
node[scoreName], node[stdName] = y, std
|
||||
if 'rating' in node and node['rating']==None:
|
||||
s, std = y[i], stds[i]
|
||||
i+=1
|
||||
node[scoreName], node[stdName] = s, std
|
||||
|
Loading…
Reference in New Issue
Block a user