diff --git a/caliGraph.py b/caliGraph.py index e8f39f8..b227a2a 100755 --- a/caliGraph.py +++ b/caliGraph.py @@ -344,6 +344,12 @@ def removeUselessTags(G, minUnread=1): if foundUnread < minUnread: G.remove_node(n) +def removeUselessSeries(G, minSco=0): + for n in list(G.nodes): + node = G.nodes[n] + if node['t'] == 'series': + if len(G.adj[n]) < 2 or node['score'] < minSco: + G.remove_node(n) def scoreOpinions(G, globMu, globStd): for n in list(G.nodes): @@ -386,7 +392,8 @@ def scoreUnread(G, globMu, globStd): ws.append(getWeightForType('sigma')) feedbacks.append(node['se']) ws.append(getWeightForType('se')) - #node['score'] = sum([fb*w for fb, w in zip(feedbacks, weights)])/len(feedbacks) + feedbacks.append(globMu) + ws.append(getWeightForType('bias')) node['score'] = sum([fb*w for fb, w in zip(feedbacks, ws)])/sum(ws) else: node['score'] = globMu + errorFac*globStd + len(feedbacks)*0.0000000001 @@ -644,13 +651,17 @@ def recommendNBooks(G, mu, std, n, removeTopListsB=True, removeUselessRecommende pruneTags(G, 12) pruneAuthorCons(G, int(n/5)) pruneRecommenders(G, 12 - min(5, n/20)) + removeUselessSeries(G, mu) removeUselessTags(G) if removeTopListsB: removeTopLists(G) removeDangling(G, alsoBooks=True) removeKeepBest(G, n+math.ceil(n/20)+3, maxDistForRead=1.5) - removeUselessReadBooks(G) removeEdge(G) + removeKeepBest(G, n+1, maxDistForRead=1.25) + removeUselessSeries(G, mu) + removeUselessTags(G) + removeUselessReadBooks(G) removeKeepBest(G, n, maxDistForRead=1.25) scaleBooksByRating(G) @@ -775,6 +786,7 @@ def evaluateFitness(books): ratedBooks = [n for n in list(G.nodes) if 'rating' in G.nodes[n] and G.nodes[n]['rating'] != None] boundsLoss = 0 + linSepLoss = [] errSq = [] mu, sigma = genScores(G, books) for b in G.nodes: @@ -794,9 +806,10 @@ def evaluateFitness(books): elif score < 0.0: boundsLoss += (score)**2 # reward seperation linearly - boundsLoss -= abs(score - mu)/10 + linSepLoss.append(abs(score - mu)) regressionLoss = sum([(1-w)**2 for w in weights.values()]) - return sum(errSq)/len(errSq) + regressionLoss/100 + boundsLoss/100 + print(sum(errSq)/len(errSq), 0.005*regressionLoss, 0.2*boundsLoss/len(ratedBooks), 0.5*sum(linSepLoss)/len(linSepLoss)) + return sum(errSq)/len(errSq) + 0.005*regressionLoss + 0.2*boundsLoss/len(ratedBooks) - 0.5*sum(linSepLoss)/len(linSepLoss) def train(gamma = 1): global weights