Compare commits
22 Commits
Author | SHA1 | Date | |
---|---|---|---|
4580f67920 | |||
2f2da60626 | |||
73c7e5e6c2 | |||
e45423aaa4 | |||
9a473edfdc | |||
1c34d2876f | |||
6af38c686f | |||
5ef60d340e | |||
29b5959623 | |||
4f116bc8bf | |||
6ebe7d03fc | |||
8e8592bb29 | |||
f9c70a8ee4 | |||
0f35ae691e | |||
9193e6b3e6 | |||
63895953c0 | |||
ac6d85fa99 | |||
44c0c189d7 | |||
b75ede5d89 | |||
84deaa2f64 | |||
26527e83c3 | |||
2642423289 |
3
.gitignore
vendored
3
.gitignore
vendored
@ -2,5 +2,6 @@ __pycache__
|
|||||||
*.html
|
*.html
|
||||||
.venv
|
.venv
|
||||||
neuralWeights.json
|
neuralWeights.json
|
||||||
neuralWeights.json.bak
|
neuralWeights.json.*
|
||||||
.imgLinkCache.json
|
.imgLinkCache.json
|
||||||
|
.idea
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
# CaliGraph
|
# CaliGraph
|
||||||
CaliGraph connects to the database of your local Calibre-Instance in order to recommend which unread books are likely to be enjoyed. The recommendations are displayed in a graph which explains the recommendation by showing correlations to previously read books, authors, recommendations by same individuals, tags...
|
CaliGraph connects to the database of your local Calibre-Instance in order to recommend which unread books are likely to be enjoyed. The recommendations are displayed in a graph which explains the recommendation by showing correlations to previously read books, authors, recommendations by same individuals, tags...
|
||||||
|
|
||||||
![Screenshot](https://gitea.dominik.roth.ml/dodox/CaliGraph/raw/branch/master/Screenshot_README.png)
|
![Screenshot](./Screenshot_README.png)
|
||||||
|
709
caliGraph.py
709
caliGraph.py
File diff suppressed because it is too large
Load Diff
75
py/gp.py
75
py/gp.py
@ -1,75 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
|
|
||||||
from node2vec import Node2Vec
|
|
||||||
from sklearn.gaussian_process.kernels import Kernel, Hyperparameter
|
|
||||||
from sklearn.gaussian_process.kernels import GenericKernelMixin
|
|
||||||
from sklearn.gaussian_process import GaussianProcessRegressor
|
|
||||||
#from sklearn.gaussian_process import GaussianProcessClassifier
|
|
||||||
from sklearn.base import clone
|
|
||||||
|
|
||||||
class BookKernel(GenericKernelMixin, Kernel):
|
|
||||||
def __init__(self, wv):
|
|
||||||
self.wv = wv
|
|
||||||
|
|
||||||
def _f(self, s1, s2):
|
|
||||||
"""
|
|
||||||
kernel value between a pair of sequences
|
|
||||||
"""
|
|
||||||
s = self.wv.similarity(s1, s2)**2*0.99 + 0.01
|
|
||||||
if s <= 0:
|
|
||||||
print('bad!')
|
|
||||||
return s
|
|
||||||
|
|
||||||
def __call__(self, X, Y=None, eval_gradient=False):
|
|
||||||
if Y is None:
|
|
||||||
Y = X
|
|
||||||
|
|
||||||
if eval_gradient:
|
|
||||||
return (
|
|
||||||
np.array([[self._f(x, y) for y in Y] for x in X])
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
return np.array([[self._f(x, y) for y in Y] for x in X])
|
|
||||||
#return np.array(self.wv.n_similarity(X, Y))
|
|
||||||
|
|
||||||
def diag(self, X):
|
|
||||||
return self(X)
|
|
||||||
|
|
||||||
def is_stationary(self):
|
|
||||||
return False
|
|
||||||
|
|
||||||
def clone_with_theta(self, theta):
|
|
||||||
cloned = clone(self)
|
|
||||||
cloned.theta = theta
|
|
||||||
return cloned
|
|
||||||
|
|
||||||
def genGprScores(G, scoreName='gpr_score', stdName='gpr_std'):
|
|
||||||
print('[\] Constructing Feature-Space-Projector')
|
|
||||||
node2vec = Node2Vec(G, dimensions=32, walk_length=16, num_walks=128, workers=8)
|
|
||||||
print('[\] Fitting Embeddings for Kernel')
|
|
||||||
model = node2vec.fit(window=8, min_count=1, batch_words=4)
|
|
||||||
wv = model.wv
|
|
||||||
print('[\] Constructing Kernel')
|
|
||||||
kernel = BookKernel(wv)
|
|
||||||
print('[\] Fitting GP')
|
|
||||||
X, y = [], []
|
|
||||||
for n in G.nodes:
|
|
||||||
node = G.nodes[n]
|
|
||||||
if 'rating' in node and node['rating']!=None:
|
|
||||||
X.append(n)
|
|
||||||
y.append(node['rating'])
|
|
||||||
gpr = GaussianProcessRegressor(kernel=kernel, random_state=3141, alpha=1e-8).fit(X, y)
|
|
||||||
print('[\] Inferencing GP')
|
|
||||||
X = []
|
|
||||||
for n in G.nodes:
|
|
||||||
node = G.nodes[n]
|
|
||||||
if not 'rating' in node or node['rating']==None:
|
|
||||||
X.append(n)
|
|
||||||
y, stds = gpr.predict(X, return_std=True)
|
|
||||||
i=0
|
|
||||||
for n in G.nodes:
|
|
||||||
node = G.nodes[n]
|
|
||||||
if not 'rating' in node or node['rating']==None:
|
|
||||||
s, std = y[i], stds[i][i][0]
|
|
||||||
i+=1
|
|
||||||
node[scoreName], node[stdName] = float(s), float(std)
|
|
@ -6,3 +6,9 @@ pyvis
|
|||||||
fuzzywuzzy
|
fuzzywuzzy
|
||||||
rake_nltk
|
rake_nltk
|
||||||
ptpython
|
ptpython
|
||||||
|
requests
|
||||||
|
pandas
|
||||||
|
plotly
|
||||||
|
wikipedia
|
||||||
|
argcomplete
|
||||||
|
pyzshcomplete
|
||||||
|
Loading…
Reference in New Issue
Block a user