#!./.venv/bin/python3.10 import os import re import json import math import copy import random import requests import numpy as np import pandas as pd from scipy.stats import norm import matplotlib.pyplot as plt import networkx as nx from pyvis.network import Network import plotly.graph_objects as go import wikipedia class Error(Exception): pass def getAllAuthors(books): authors = set() for book in books: for author in getAuthors(book): authors.add(author) return list(authors) def getAuthors(book): return book['authors'].split(' & ') def getRecommenders(book): recs = set() for tag in book['tags']: if tag.find(" Recommendation") != -1: recs.add(tag.replace(" Recommendation", "")) elif tag.find("s Literature Club") != -1: recs.add(tag.replace("s Literature Club", "")) elif tag.find(":MRB") != -1: recs.add(tag.replace(":MRB", "")) return list(recs) def getTags(book): for tag in book['tags']: if tag.find(" Recommendation") == -1 and tag.find("s Literature Club") == -1 and tag.find(" Top ") == -1 and tag.find(":MRB") == -1: yield tag def getAllRecommenders(books): recs = set() for book in books: for rec in getRecommenders(book): recs.add(rec) return list(recs) def getTopLists(book): lists = set() for tag in book['tags']: if tag.find(" Top ") != -1: lists.add(tag.split(" Top ")[0]) return list(lists) def getAllTopLists(books): tops = set() for book in books: for top in getTopLists(book): tops.add(top) return list(tops) def getAllSeries(books): series = set() for book in books: if 'series' in book: series.add(book['series']) return list(series) def getAllTags(books): tags = set() for book in books: for tag in getTags(book): tags.add(tag) return list(tags) def getTopListWeight(book, topList): minScope = 100000 for tag in book['tags']: if tag.find(topList+" Top ") != -1: scope = int(tag.split(" Top ")[1]) minScope = min(minScope, scope) if minScope == 100000: raise Exception("You stupid?") if minScope == 10: return 1 elif minScope == 25: return 0.85 elif minScope == 100: return 0.5 return 50 / minScope def removeRead(G): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'book': if node['rating'] != None: G.remove_node(n) def removeUnread(G): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'book': if node['rating'] == None: G.remove_node(n) def removePriv(G): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'book': if 'priv' in node['tags']: G.remove_node(n) def removeWhitepapers(G): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'book': if 'whitepaper' in node['tags']: G.remove_node(n) def removeDangling(G, alsoBooks=False): for n in list(G.nodes): node = G.nodes[n] if node['t'] != 'book' or alsoBooks: if not len(G.adj[n]): G.remove_node(n) def removeThinRecs(G, minCons=3): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'recommender': if not len(G.adj[n]) >= minCons: G.remove_node(n) def removeEdge(G): for n in list(G.nodes): node = G.nodes[n] if node['t'] != 'book': if len(G.adj[n]) < 2: G.remove_node(n) def removeBad(G, threshold, groups=['book', 'topList', 'recommender', 'author', 'series', 'tag']): for n in list(G.nodes): node = G.nodes[n] if node['t'] in groups: if 'score' in node and (node['score'] == None or node['score'] < threshold): G.remove_node(n) def removeKeepBest(G, num, maxDistForRead=1, forType='book'): bestlist = [] for n in list(G.nodes): node = G.nodes[n] if node['t'] == forType: if 'score' in node and node['score'] != None: bestlist.append(node) bestlist.sort(key=lambda node: node['score'], reverse=True) bestlist = bestlist[:num] for n in list(G.nodes): node = G.nodes[n] if node['t'] == forType and node not in bestlist or 'score' in node and node['score'] == None: if not 'rating' in node or node['rating'] == None or node['rating'] < bestlist[-1]['score']-maxDistForRead: G.remove_node(n) def removeTags(G): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'tag': G.remove_node(n) def pruneTags(G, minCons=2): for n in sorted(list(G.nodes), key=lambda i: G.nodes[i]['score'] + len(G.nodes[i]['feedbacks'])/5 if 'score' in G.nodes[i] and 'feedbacks' in G.nodes[i] else 0): node = G.nodes[n] if node['t'] == 'tag': foundCon = 0 for book in G.adj[n]: for con in G.adj[book]: conType = G.nodes[con]['t'] if conType not in ['topList']: if conType in ['recommender']: foundCon += 0.5 elif conType in ['tag', 'series']: foundCon += 0.25 else: foundCon += 1 if foundCon > minCons: G.remove_node(n) def pruneRecommenders(G, minCons=2): for n in sorted(list(G.nodes), key=lambda i: G.nodes[i]['score'] if 'score' in G.nodes[i] else 0): node = G.nodes[n] if node['t'] == 'recommender': foundCon = 0 for book in G.adj[n]: for con in G.adj[book]: conType = G.nodes[con]['t'] if conType not in ['topList']: if conType in ['recommender']: foundCon += 0.5 elif conType in ['tag', 'series']: foundCon += 0.25 else: foundCon += 1 if foundCon > minCons: G.remove_node(n) def pruneRecommenderCons(G, maxCons=5): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'recommender': if len(G.adj[n]) > maxCons: bestlist = [] for m in list(G.adj[n]): book = G.nodes[m] if book['t'] == 'book': if 'score' in book and book['score'] != None: bestlist.append(book) bestlist.sort(key=lambda node: node['score'], reverse=True) bestlist = bestlist[:maxCons] for m in list(G.adj[n]): book = G.nodes[m] if book['t'] == 'book' and book not in bestlist or 'score' in book and book['score'] == None: if not 'rating' in book or book['rating'] == None: foundCon = 0 for con in G.adj[m]: if G.nodes[con]['t'] not in ['topList']: foundCon += 1 if foundCon < 2: G.remove_node(m) def pruneAuthorCons(G, maxCons=3): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'author': if len(G.adj[n]) > maxCons: bestlist = [] for m in list(G.adj[n]): book = G.nodes[m] if book['t'] == 'book': if 'score' in book and book['score'] != None: bestlist.append(book) bestlist.sort(key=lambda node: node['score'], reverse=True) bestlist = bestlist[:maxCons] for m in list(G.adj[n]): book = G.nodes[m] if book['t'] == 'book' and book not in bestlist or 'score' in book and book['score'] == None: if not 'rating' in book or book['rating'] == None: foundCon = 0 for con in G.adj[m]: if G.nodes[con]['t'] not in ['topList']: foundCon += 1 if foundCon < 2: G.remove_node(m) def removeHighSpanTags(G, maxCons=5): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'tag': if len(G.adj[n]) > maxCons: G.remove_node(n) def removeHighSpanReadBooks(G, maxCons=8): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'book' and node['rating'] != None: if sum([1 for adj in G.adj[n] if G.nodes[adj]['t']=='recommender']) > maxCons: G.remove_node(n) def removeTopLists(G): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'topList': G.remove_node(n) def removeRecommenders(G): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'recommender': G.remove_node(n) def removeAuthors(G): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'author': G.remove_node(n) def removeSeries(G): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'series': G.remove_node(n) def removeRestOfSeries(G): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'series': seriesState = 0 for adj in G.adj[n]: adjNode = G.nodes[adj] if adjNode['rating'] != None: seriesState = max(seriesState, int( adjNode['series_index'])) for adj in list(G.adj[n]): adjNode = G.nodes[adj] if adjNode['series_index'] > seriesState + 1.0001: G.remove_node(adj) def removeUnusedRecommenders(G): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'recommender': for adj in G.adj[n]: adjNode = G.nodes[adj] if adjNode['t']=='book' and 'score' in adjNode: break else: # No unrated recommendation G.remove_node(n) def removeUselessReadBooks(G): minForce = 1.5 minContact = 2 for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'book' and node['rating'] != None: force = 0 contacts = 0 for adj in G.adj[n]: adjNode = G.nodes[adj] contacts += 1 for cousin in G.adj[adj]: cousinNode = G.nodes[cousin] if cousinNode['t']=='book' and 'score' in cousinNode or cousinNode['t'] == 'newBook': if adjNode['t']=='recommender': force += 0.5 else: force += 1 if force < minForce or contacts < minContact: G.remove_node(n) def removeUselessTags(G, minUnread=1): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'tag': foundUnread = 0 for adj in G.adj[n]: adjNode = G.nodes[adj] if adjNode['t']=='book' and 'score' in adjNode: foundUnread += 1 if foundUnread < minUnread: G.remove_node(n) def removeUselessSeries(G, minSco=0): for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'series': if len(G.adj[n]) < 2 or node['score'] < minSco: G.remove_node(n) def scoreOpinions(G, globMu, globStd): for n in list(G.nodes): node = G.nodes[n] feedbacks = [] if node['t'] not in ['book']: adjacens = list(G.adj[n].keys()) for adj in adjacens: adjNode = G.nodes[adj] if adjNode['rating'] != None: feedbacks.append(adjNode['rating']) if len(feedbacks): node['mean'], node['std'] = norm.fit(feedbacks) node['se'] = globStd / math.sqrt(len(feedbacks)) ratio = len(feedbacks) / len(adjacens) node['score'] = node['mean'] + globStd/3 - node['se'] node['feedbacks'] = feedbacks else: node['score'] = None def scoreUnread(G, globMu, globStd): for n in list(G.nodes): feedbacks = [globMu] ws = [['mu']] node = G.nodes[n] if node['t'] == 'book': if node['rating'] == None: adjacens = list(G.adj[n].keys()) for adj in adjacens: adjNode = G.nodes[adj] if 'score' in adjNode and adjNode['score'] != None: w = [adjNode['t'], G[n][adj]['weight'] if 'weight' in G[n][adj] else 1] for fb in adjNode['feedbacks']: feedbacks.append(fb) ws.append(w) if len(feedbacks): node['mean'], node['std'] = norm.fit(feedbacks) node['median'] = np.percentile(feedbacks, [50], method='linear')[0] node['se'] = globStd / math.sqrt(len(feedbacks)) feedbacks.append(node['pagerank_score']) ws.append(['pagerank']) #feedbacks.append(10/math.ln10(10+node['tgb_rank']) if 'tgb_rank' in node else 0) #ws.append(['tgb_rank']) feedbacks.append(node['std']) ws.append(['sigma']) feedbacks.append(node['median']) ws.append(['median']) #feedbacks.append(node['se']) #ws.append(['se']) feedbacks.append(globMu) ws.append(['bias']) node['score'] = sum([fb*getWeightForType(w[0], w[1] if len(w)>1 else 1) for fb, w in zip(feedbacks, ws)])/sum([getWeightForType(w[0], w[1] if len(w)>1 else 1) for w in ws]) node['_act'] = feedbacks node['_wgh'] = ws else: node['score'] = globMu + errorFac*globStd + len(feedbacks)*0.0000000001 if 'series' in node: if node['series_index'] == 1.0: node['score'] += 0.000000001 def getWeightForType(nodeType, edgeWeight=1): global weights w = weights[nodeType] if nodeType == 'topList': return edgeWeight*w else: return w def printBestList(G, t='book', num=-1): bestlist = [] for n in list(G.nodes): node = G.nodes[n] if node['t'] == t: if 'score' in node and node['score'] != None: bestlist.append(node) bestlist.sort(key=lambda node: node['score'] + 0.00001*(node['se'] if 'se' in node else 0), reverse=True) for i, book in enumerate(bestlist): if t=='book': line = book['title'] + " ("+" & ".join(book['authors'])+")"+": {:.5f}".format(book['score']) else: line = book['label'] print("["+str(i+1).zfill(int((math.log10(num) if num!=-1 else 3)+1))+"] "+line) if num!=-1 and i == num-1: break def readColor(book): if 'rating' in book: return 'green' else: return 'gray' def loadBooksFromDB(): books = calibreDB.getBooks() infuseDataFromMRB(books) #infuseDataFromTGB(books) return books def mrbGetBook(mrbdf, title, authors): title = title.split('(')[0] title = title.replace('*','') pot = mrbdf[mrbdf['title'].str.contains(title)] dic = pot.to_dict(orient='records') for d in dic: for author in authors: parts = author.split(" ") for part in [parts[0], parts[-1]]: if d['author'].find(part)==-1: break else: return d return False def tgbGetBook(df, title, authors): title = title.split('(')[0] title = title.replace('*','') pot = df[df['title'].str.contains(title)] dic = pot.to_dict(orient='records') for d in dic: for author in authors: parts = author.split(" ") for part in [parts[0], parts[-1]]: if d['author'].find(part)==-1: break else: return d return False def infuseDataFromMRB(books): mrbdf = pd.read_csv('rec_dbs/mrb_db.csv') for book in books: mrb = mrbGetBook(mrbdf, book['title'], book['authors']) if mrb: for rec in str(mrb['recommender']).split('|'): book['tags'] += [rec + ':MRB'] def infuseDataFromTGB(books): for i in range(1,3): df = pd.read_csv('rec_dbs/tgb_'+str(i)+'.csv') for book in books: tgb = tgbGetBook(df, book['title'], book['authors']) if tgb: book['tgb_rank'] = int(tgb['id']) class calibreDB(): @classmethod def _getTxt(cls, request): ret = os.popen("calibredb "+request).read() if not ret: raise Error('Unable to connect to CalibreDB. Please close all open instances of Calibre.') return ret @classmethod def _getJson(cls, request): return json.loads(cls._getTxt(request)) @classmethod def getBooks(cls): return cls._getJson('list --for-machine -f all') @classmethod def getCustomColumns(cls): lines = cls._getTxt('custom_columns').split('\n') cols = [line.split(' ')[0] for line in lines] return cols @classmethod def _requireCaliceColumn(cls): if not 'calice' in cls.getCustomColumns(): raise Error('Custom Column missing from CalibreDB. Create it using the "createColumns" command.') @classmethod def createCaliceColumn(cls): if 'calice' in cls.getCustomColumns(): raise Error('Custom Column already exists.') cls._getTxt("add_custom_column calice 'Calice AI Rating' rating") @classmethod def writeCaliceColumn(cls, bookId, rating): cls.writeCaliceColumnMultiple({bookId: rating}) @classmethod def writeCaliceColumnMultiple(cls, ratings): from tqdm.auto import tqdm cls._requireCaliceColumn() for bookId in tqdm(ratings): rating = ratings[bookId] cls._getTxt('set_custom calice '+str(bookId)+' '+str(int(round(rating)))) def calice(G): ratings = {} for n in list(G.nodes): node = G.nodes[n] if node['t'] in ['book']: if 'score' in node and node['score'] != None: ratings[node['calibreID']] = node['score'] print('Inserting '+str(len(ratings))+' ratings into the calibreDB') calibreDB.writeCaliceColumnMultiple(ratings) print('Done.') def remove_html_tags(text): clean = re.compile('<.*?>') return re.sub(clean, '', text) def getKeywords(txt,rake): txt = remove_html_tags(txt) k = [] rake.extract_keywords_from_text(txt) kws = rake.get_ranked_phrases_with_scores() for i,(score,kw) in enumerate(kws): l = len(kw.split(' ')) if kw.lower() not in ['p', 'die', 'best', 'known', 'fk', 'p pp', 'one'] and len(kw)>3 and kw.find('div')==-1 and kw.lower().find('p p')==-1: k.append((score**(1/(l*0.4)),kw)) k.sort(key=lambda x: x[0],reverse=True) if k: minSco = k[0][0]/3*2 for i,kw in enumerate(k): if kw[0] < minSco: return [(sco,word.title()) for sco,word in k[:i]] return k return [] def runPagerank(G): try: scores = nx.pagerank(G=G) except nx.exception.PowerIterationFailedConvergence: print('[!] Could not calculate pagerank-scores: Power iteration of the eigenvector calculation did not converge') print('[ ] Recommendations will be of slighly lower quality') scores = {} for n in list(G.nodes): G.nodes[n]['pagerank_score'] = scores[n] if n in scores else 0 def buildBookGraph(books, darkMode=False, extractKeywords=True, mergeTags=True): G = nx.Graph() if extractKeywords: from rake_nltk.rake import Rake rake = Rake() # Books for book in books: tags = book['tags'] if 'rating' in book: rating = book['rating'] else: rating = None if 'comments' in book: desc = book['comments'] else: desc = '' if 'comments' in book and extractKeywords: sanitized = re.sub(r'[^a-zA-Z0-9\s\.äöü]+', '', book['comments']).replace('\n',' ') keywords = getKeywords(sanitized,rake) else: keywords = [] if mergeTags: tags = tags + [word for (score, word) in keywords] if 'series' in book: series = book['series'] series_index = book['series_index'] else: series = None series_index = None G.add_node(book['id'], t='book', label=book['title'], title=book['title'], shape='image', image=book['cover'], rating=rating, tags=tags, keywords=keywords, desc=desc, isbn=book['isbn'], files=book['formats'], authors=getAuthors(book), series=series, series_index=series_index, calibreID=book['id']) return G def getWikiImage(search_term): from fuzzywuzzy import fuzz WIKI_REQUEST = 'http://en.wikipedia.org/w/api.php?action=query&prop=pageimages&format=json&piprop=original&titles=' try: print('[i] Searching for >'+search_term+'< on WikiPedia...') result = wikipedia.search(search_term, results = 1) if fuzz.ratio(search_term, result) < 50: raise Exception('blub') wikipedia.set_lang('en') wkpage = wikipedia.WikipediaPage(title = result[0]) title = wkpage.title response = requests.get(WIKI_REQUEST+title) json_data = json.loads(response.text) img_link = list(json_data['query']['pages'].values())[0]['original']['source'] return img_link except: print('[!] No match for '+search_term+' on WikiPedia...') return None def graphAddAuthors(G, books, darkMode=False): for author in getAllAuthors(books): G.add_node('a/'+author, color='green', t='author', label=author) for book in books: for author in getAuthors(book): G.add_edge('a/'+author, book['id'], color=readColor(book)) return G def graphAddRecommenders(G, books, darkMode=False): for rec in getAllRecommenders(books): G.add_node('r/'+rec, color='orange', t='recommender', label=rec) for book in books: for rec in getRecommenders(book): G.add_edge('r/'+rec, book['id'], color=readColor(book)) return G def graphAddTopLists(G, books, darkMode=False): for tl in getAllTopLists(books): G.add_node('t/'+tl, color='yellow', t='topList', label=tl) for book in books: for top in getTopLists(book): G.add_edge('t/'+top, book['id'], weight=getTopListWeight( book, top), color=readColor(book)) return G def graphAddSeries(G, books, darkMode=False): for series in getAllSeries(books): G.add_node('s/'+series, color='red', t='series', label=series, shape='triangle') for book in books: if 'series' in book: G.add_edge('s/'+book['series'], book['id'], color=readColor(book)) return G def graphAddTags(G, books, darkMode=False): for tag in getAllTags(books): G.add_node('t/'+tag, color=['lightGray','darkgray'][darkMode], t='tag', label=tag, shape='box') for book in books: for tag in getTags(book): G.add_edge('t/'+tag, book['id'], color=readColor(book)) return G def calcRecDist(G, books): globRatings = [] for book in books: if G.nodes[book['id']]['rating'] != None: globRatings.append(G.nodes[book['id']]['rating']) return norm.fit(globRatings) def scaleBooksByRating(G): for n in list(G.nodes): node = G.nodes[n] if node['t'] not in []: if 'rating' in node and node['rating'] != None: node['value'] = 20 + 5 * int(node['rating']) else: if 'score' in node and node['score'] != None: node['value'] = 20 + int(5 * float(node['score'])) else: node['value'] = 15 def scaleOpinionsByRating(G): for n in list(G.nodes): node = G.nodes[n] if node['t'] in ['topList', 'recommender', 'author', 'series']: if 'score' in node and node['score'] != None: node['value'] = 20 + 5 * int(node['score']) else: node['value'] = 20 def addScoreToLabels(G): for n in list(G.nodes): node = G.nodes[n] if node['t'] not in ['tag', 'newBook']: if 'rating' in node and node['rating'] != None: node['label'] += " ("+str(node['rating'])+")" else: if 'score' in node and node['score'] != None and 'se' in node: node['label'] += " ({:.2f}±{:.1f})".format(node['score'], node['se']) else: node['label'] += " (0±∞)" def genAndShowHTML(G, showButtons=False, darkMode=False, arrows=False): net = Network('1050px', '1900px', directed=arrows, bgcolor=['#FFFFFF','#181818'][darkMode]) if showButtons: net.show_buttons(filter_=['configure', 'layout', 'interaction', 'physics', 'edges']) net.from_nx(G) net.show('nx.html') def genAndShow3D(G, darkMode=False): node_sizes = [] node_labels = [] node_cols = [] for n in G.nodes: node = G.nodes[n] if node['t']=='tag': node_cols.append('gray') elif node['t']=='book': if 'score' in node: # unread book node_cols.append('lightblue') else: node_cols.append('magenta') elif 'color' in node: node_cols.append(node['color']) else: node_cols.append('black') node_labels.append(node['label']) node_sizes.append((node['value']/8)**1.5) spring = nx.spring_layout(G,dim=3, seed=random.randint(0, 65536)) x_nodes = [spring[p][0] for p in spring]# x-coordinates of nodes y_nodes = [spring[p][1] for p in spring]# y-coordinates z_nodes = [spring[p][2] for p in spring]# z-coordinates x_edges=[] y_edges=[] z_edges=[] for edge in G.edges(): x_coords = [spring[edge[0]][0],spring[edge[1]][0],None] x_edges += x_coords y_coords = [spring[edge[0]][1],spring[edge[1]][1],None] y_edges += y_coords z_coords = [spring[edge[0]][2],spring[edge[1]][2],None] z_edges += z_coords trace_edges = go.Scatter3d(x=x_edges, y=y_edges, z=z_edges, mode='lines', line=dict(color='black', width=2), hoverinfo='none') trace_nodes = go.Scatter3d(x=x_nodes, y=y_nodes, z=z_nodes, mode='markers', marker=dict(symbol='circle', size=node_sizes, color=node_cols, #color the nodes according to their community #colorscale=['lightgreen','magenta'], #either green or mageneta line=dict(color='gray', width=0.5)), text=node_labels, hoverinfo='text') axis = dict(showbackground=False, showline=False, zeroline=False, showgrid=False, showticklabels=False, title='') layout = go.Layout(title="", width=1920, height=1080, plot_bgcolor=['#FFFFFF','#181818'][darkMode], paper_bgcolor=['#FFFFFF','#181818'][darkMode], showlegend=False, scene=dict(xaxis=dict(axis), yaxis=dict(axis), zaxis=dict(axis), ), margin=dict(l=0, r=0, b=0, t=0), hovermode='closest') data = [trace_edges, trace_nodes] fig = go.Figure(data=data, layout=layout) fig.show() def buildFullGraph(darkMode=False): books = loadBooksFromDB() G = buildBookGraph(books, darkMode=darkMode) graphAddAuthors(G, books, darkMode=darkMode) graphAddRecommenders(G, books, darkMode=darkMode) graphAddTopLists(G, books, darkMode=darkMode) graphAddSeries(G, books, darkMode=darkMode) graphAddTags(G, books, darkMode=darkMode) return G, books def genScores(G, books, calcPagerank=True): globMu, globStd = calcRecDist(G, books) if calcPagerank: runPagerank(G) scoreOpinions(G, globMu, globStd) scoreUnread(G, globMu, globStd) return globMu, globStd def addImageToNode(node, cache, shape='circularImage'): name = node['label'].split(' (')[0].replace('*','') if not name in cache or (cache[name]==False and random.random()<0.05): term = name img = getWikiImage(term) if img: cache[name] = img else: cache[name] = False else: img = cache[name] if img: #node['imagePadding'] = '100px' node['image']=img node['shape']=shape def addImagesToNodes(G): try: with open('.imgLinkCache.json', 'r') as cf: cache = json.loads(cf.read()) except IOError: cache = {} for n in list(G.nodes): node = G.nodes[n] if node['t'] in ['recommender', 'author']: addImageToNode(node, cache, ['circularImage','image'][node['t']=='author']) with open('.imgLinkCache.json', 'w') as cf: cf.write(json.dumps(cache)) def recommendNBooksRecommenderBased(G, mu, std, n, removeTopListsB=True, removeUselessRecommenders=True): removeRestOfSeries(G) removeBad(G, mu-std*2-1) removeKeepBest(G, int(n*2) + 5, maxDistForRead=2) removeEdge(G) removeHighSpanTags(G, 6) removeDangling(G, alsoBooks=False) pruneTags(G, 10) removeBad(G, mu, groups=['book']) removeUselessReadBooks(G) pruneTags(G, 6) pruneRecommenderCons(G, int(n/7)+1) pruneAuthorCons(G, int(n/15)) removeUselessTags(G) if removeTopListsB: removeTopLists(G) removeDangling(G, alsoBooks=True) removeKeepBest(G, n+math.ceil(n/20), maxDistForRead=1.5) removeEdge(G) removeDangling(G, alsoBooks=True) removeUselessReadBooks(G) if removeUselessRecommenders: removeUnusedRecommenders(G) removeDangling(G, alsoBooks=True) removeKeepBest(G, n, maxDistForRead=1.25) scaleBooksByRating(G) scaleOpinionsByRating(G) addScoreToLabels(G) def recommendNBooksTagBased(G, mu, std, n, removeTopListsB=True): removeRestOfSeries(G) removeBad(G, mu-std*2-1) removeKeepBest(G, int(n*2) + 5, maxDistForRead=2) removeEdge(G) removeHighSpanTags(G, 12) removeDangling(G, alsoBooks=False) pruneTags(G, 24) removeBad(G, mu, groups=['book']) removeUselessReadBooks(G) pruneTags(G, 16) pruneAuthorCons(G, int(n/5)) removeRecommenders(G) removeUselessTags(G) if removeTopListsB: removeTopLists(G) removeDangling(G, alsoBooks=True) removeKeepBest(G, n+math.ceil(n/20), maxDistForRead=1.5) removeUselessReadBooks(G) removeUselessTags(G) removeKeepBest(G, n, maxDistForRead=1.25) scaleBooksByRating(G) scaleOpinionsByRating(G) addScoreToLabels(G) def recommendNBooks(G, mu, std, n, removeTopListsB=True, removeUselessRecommenders=True, v3d=False): removeRestOfSeries(G) removeBad(G, mu-std-0.5) removeBad(G, mu+std/2, groups=['recommender']) removeThinRecs(G, 3) removeKeepBest(G, int(n*2) + 5, maxDistForRead=2) removeEdge(G) removeHighSpanTags(G, 8) pruneTags(G, 7) removeHighSpanReadBooks(G, 14) removeDangling(G, alsoBooks=False) pruneRecommenders(G, 12) removeThinRecs(G, 3) removeBad(G, mu, groups=['book']) removeUselessReadBooks(G) pruneAuthorCons(G, int(n/5)+3) pruneRecommenders(G, 12 - min(4, n/20)) removeUselessSeries(G, mu) removeUselessTags(G) pruneTags(G, 6) if removeTopListsB: removeTopLists(G) removeDangling(G, alsoBooks=True) removeKeepBest(G, n+math.ceil(n/20)+3, maxDistForRead=1.5) removeEdge(G) removeKeepBest(G, n+1, maxDistForRead=1.25) removeUselessSeries(G, mu) removeUselessTags(G) removeUselessReadBooks(G) removeThinRecs(G, 2 + 1 * (n>20 and not v3d)) removeKeepBest(G, n, maxDistForRead=1.25) scaleBooksByRating(G) scaleOpinionsByRating(G) addScoreToLabels(G) def listScores(G, mu, std, n): removeRestOfSeries(G) removeKeepBest(G, n, maxDistForRead=10) scaleBooksByRating(G) scaleOpinionsByRating(G) addScoreToLabels(G) def fullGraph(G, removeTopListsB=True): removeEdge(G) removeHighSpanTags(G, 7) removeDangling(G, alsoBooks=False) if removeTopListsB: removeTopLists(G) pruneTags(G, 3) removeDangling(G, alsoBooks=True) scaleBooksByRating(G) scaleOpinionsByRating(G) addScoreToLabels(G) def recommenderCompetence(G): #removeRead(G) removeUnread(G) removeTags(G) removeAuthors(G) removeSeries(G) removeTopLists(G) removeEdge(G) removeDangling(G, alsoBooks=True) scaleBooksByRating(G) scaleOpinionsByRating(G) addScoreToLabels(G) for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'recommender': if 'se' in node: node['score'] -= node['se'] * 1 else: if not node['score']: node['score'] = 0 node['score'] /= 2 def readBooksAnalysis(G, minRating=0, showAllTags=True, removeUnconnected=False, removeTopListsB=True): removeUnread(G) removeBad(G, minRating) if not showAllTags: removeEdge(G) removeHighSpanTags(G, 15) removeDangling(G, alsoBooks=removeUnconnected) if removeTopListsB: removeTopLists(G) pruneTags(G, 8) scaleBooksByRating(G) scaleOpinionsByRating(G) addScoreToLabels(G) def progress(G, books, mu, minimum=3.5): findNewBooks(G, books, mu, -1, minRecSco = minimum) bookCount = 0 libCount = 0 readCount = 0 toReadCount = 0 for n in list(G.nodes): node = G.nodes[n] if node['t'] in ['book','newBook']: if node['t'] == 'book': libCount +=1 bookCount += 1 if 'rating' in node and node['rating'] != None: readCount += 1 elif 'score' in node and (node['score'] >= minimum or 'std' in node and node['std']==0.0): toReadCount += 1 perc = round(readCount / (toReadCount+readCount) * 100, 2) print('Books in library: '+str(libCount)) print('Books in CaliGraph: '+str(bookCount)) print('Read Books: '+str(readCount)) print('Unread Books: '+str(bookCount-readCount)) print('Recommended Books (score > '+str(round(minimum, 2))+'): '+str(toReadCount)) print('Progress: '+str(perc)+'%') def analyze(G, books, mu, type_name, name, dist=2.1): from fuzzywuzzy import fuzz type_ident = type_name[0] full_name = type_ident + "/" + name bestRatio, match, n = 0, None, 0 for ni in list(G.nodes): node = G.nodes[ni] if node['t'] == type_name or type_name=="any": if name==node['label'] or full_name==node['label']: match, n = node, ni break ratio = fuzz.ratio(node['label'], name) if ratio > bestRatio: bestRatio, match, n = ratio, node, ni if bestRatio < 70: print("Best Match: "+match['label']) findNewBooks(G, books, mu, num=-1, minRecSco=1) menge = set() waveFlow(G, match, n, dist, menge) for n in list(G.nodes): if n not in menge: G.remove_node(n) if dist >= 2: removeThinRecs(G, 2) removeHighSpanTags(G, 12) if dist > 1: removeDangling(G, True) scaleBooksByRating(G) scaleOpinionsByRating(G) #match['value'] = 100 if not 'shape' in match: match['shape'] = 'star' addScoreToLabels(G) match['label'] = "*"+match['label']+"*" def waveFlow(G, node, n, dist, menge, firstEdge=False): if dist <= 0: return dist -= 1 if menge==set(): firstEdge=True if node['t'] in ['topList']: if firstEdge: menge.add(n) return menge.add(n) if node['t'] in ['tag']: if firstEdge: dist-=0.1 else: return bestlist = [] keeplist = [] for m in list(G.adj[n]): book = G.nodes[m] if book['t'] not in ['NOTHING']: if 'score' in book and book['score'] != None: bestlist.append(book) elif 'rating' in book and book['rating'] != None: keeplist.append(book) else: book['score'] = 0 bestlist.append(book) bestlist.sort(key=lambda node: node['score'], reverse=True) toKeep = min(int(dist*10), math.ceil(len(bestlist) * dist - len(keeplist)*0.5)) if toKeep <= 0: keeplist.sort(key=lambda node: node['rating'], reverse=True) keeplist = keeplist[:min(int(dist*10), int(len(keeplist) * dist))] bestlist = [] else: bestlist = bestlist[:toKeep] for m in list(G.adj[n]): node = G.nodes[m] if node in bestlist or node in keeplist: waveFlow(G, node, m, dist, menge, firstEdge=firstEdge) def gensimTokensForLines(lines): for i, line in enumerate(lines): tokens = gensim.utils.simple_preprocess(line) if tokens_only: yield tokens else: # For training data, add tags yield gensim.models.doc2vec.TaggedDocument(tokens, [i]) def buildDoc2Vec(books): import gensim for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'book': pass gensimTokensForLines(lines) def shell(G, books, mu, std): from ptpython.repl import embed embed(globals(), locals()) def newBooks(G, books, num, mu, std): removeBad(G, mu-std*2) findNewBooks(G, books, mu, num, minRecSco = mu-std) removeThinRecs(G, 2) removeUnread(G) removeUselessReadBooks(G) removeTags(G) removeTopLists(G) removeSeries(G) removeEdge(G) removeDangling(G, alsoBooks=True) scaleBooksByRating(G) scaleOpinionsByRating(G) addScoreToLabels(G) def findNewBooks(G, books, mu, num=-1, minRecSco=5): mrbdf = pd.read_csv('rec_dbs/mrb_db.csv') recs = [] for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'recommender' and 'score' in node: oldBooks = [] newBooks = [] recBooks = mrbdf[mrbdf['recommender'].str.contains(node['label'])].to_dict(orient='records') for book in recBooks: if book['title'] in [b['title'] for b in books]: oldBooks.append({'title': book['title'], 'author': book['author']}) else: newBooks.append({'title': book['title'], 'author': book['author']}) recs.append({'name': node['label'], 'rec': node, 'newBooks': newBooks, 'oldBooks': oldBooks}) for rec in recs: for book in rec['newBooks']: G.add_node('n/'+book['title'], color='blue', t='newBook', label=book['title'], author=book['author']) G.add_node('r/'+rec['rec']['label'], color='orange', t='recommender', label=rec['rec']['label'], score=rec['rec']['score']) G.add_edge('r/'+rec['rec']['label'], 'n/'+book['title'], color='blue') G.add_node('a/'+book['author'], color='green', t='author', label=book['author']) G.add_edge('a/'+book['author'], 'n/'+book['title'], color='blue') for n in list(G.nodes): node = G.nodes[n] if node['t'] == 'newBook': ses = [] scores = [] for m in list(G.adj[n]): adj = G.nodes[m] if adj['t'] == 'recommender' and adj['score']!=None: scores.append(adj['score']) ses.append(adj['se']) if not len(scores): G.remove_node(n) else: ses.append(min(ses)) scores.append(mu) node['fake_se'] = sum(ses)/(len(ses)**1.2) + 0.5 + 0.5 * (len(scores)==2) # This is not how SE works. DILLIGAF? node['score'] = sum(scores)/len(scores)*1.2 - node['fake_se']*1.6 + 0.5 - 0.1/math.sqrt(len(scores)) if len(scores)==2: node['score']*=0.80 node['value'] = 20 + 5 * float(node['score']) node['label'] += " ({:.2f}±{:.1f})".format(node['score'], node['fake_se']) node['label'] += '\n ' + node['author'] if num!=-1: removeKeepBest(G, num, 10, 'newBook') # while batchSize is implemented, we only get a good gonvergence when we disable it (batchSize=-1) # but might be necessary to enable later for a larger libary for better training performance... # maybe try again for 128 books? def evaluateFitness(books, batchSize=-1, debugPrint=False): global weights G = buildBookGraph(books) graphAddAuthors(G, books) graphAddRecommenders(G, books) graphAddTopLists(G, books) graphAddSeries(G, books) graphAddTags(G, books) runPagerank(G) ratedBooks = [n for n in list(G.nodes) if 'rating' in G.nodes[n] and G.nodes[n]['rating'] != None] boundsLoss = 0 linSepLoss = [] errSq = [] gradient = {} for wt in weights: gradient[wt] = 0 mu, sigma = genScores(G, books) for b in G.nodes: batch = random.sample(ratedBooks, batchSize) if batchSize!=-1 and len(ratedBooks) > batchSize else ratedBooks if b in batch: rating = G.nodes[b]['rating'] G.nodes[b]['rating'] = None _, _ = genScores(G, books, calcPagerank=False) if G.nodes[b]['score'] > rating: # over estimated errSq.append(((rating - G.nodes[b]['score'])**2)*2) else: errSq.append((rating - G.nodes[b]['score'])**2) G.nodes[b]['rating'] = rating for wt in weights: scoreB = sum([a*(1.001 if wt==w[0] else 1)*weights[w[0]]*(w[1] if len(w)>1 else 1) for a,w in zip(G.nodes[b]['_act'], G.nodes[b]['_wgh'])])/sum([(1.001 if wt==w[0] else 1)*weights[w[0]]*(w[1] if len(w)>1 else 1) for w in G.nodes[b]['_wgh']]) gradient[wt] += ((rating - G.nodes[b]['score'])**2 - (rating - scoreB)**2)*1000 regressionLoss = sum([max(0,abs(w)-1)**2 for w in weights.values()]) # no punishment if w within -1 and 1 for wt in weights: if abs(weights[wt]) > 1.0: gradient[wt] -= weights[wt]*10 else: gradient[wt] -= weights[wt]*1 for g in gradient: gradient[g] /= len(errSq) if debugPrint: print(sum(errSq)/len(errSq), 0.001*regressionLoss) fit = sum(errSq)/len(errSq) + 0.001*regressionLoss return fit, gradient def train(initGamma, full=True): global weights if full: for wt in weights: weights[wt] = random.random() saveWeights(weights) gamma = initGamma books = loadBooksFromDB() bestWeights = copy.copy(weights) mse, gradient = evaluateFitness(books) delta = sum(gradient[g]**2 for g in gradient) best_mse = mse stagLen = 0 goal = 1.0e-4 if full: goal = 1.0e-5 while gamma > goal and delta > goal or best_mse > 15: goal *= 1.1 last_mse = mse print({'mse': mse, 'gamma': gamma, 'delta': delta}) delta = sum(gradient[g]**2 for g in gradient) for wt in weights: weights[wt] += gamma*0.1*gradient[wt]/math.sqrt(delta) mse, gradient = evaluateFitness(books) if mse < last_mse: gamma = gamma*1.25 else: gamma *= 0.25 if mse < best_mse: saveWeights(weights) bestWeights = copy.copy(weights) best_mse = mse if mse > last_mse: stagLen += 1 else: stagLen = 0 if stagLen == 4 or mse > 50: if full or mse > 10: stagLen = 0 gamma = initGamma if random.random() < 0.50: for wt in weights: weights[wt] = random.random()*2-0.5 else: weights = copy.copy(bestWeights) for wt in weights: weights[wt] *= 0.975+0.05*random.random() else: break print('Done.') def saveWeights(weights): with open('neuralWeights.json', 'w') as f: f.write(json.dumps(weights)) def loadWeights(): try: with open('neuralWeights.json', 'r') as f: weights = json.loads(f.read()) except IOError: weights = {"topList": 0.15, "recommender": 0.30, "author": 0.70, "series": 0.05, "tag": 0.05, "pagerank": 0.05, "mu": 0.50, "sigma": 0.30, "bias": 0.25, "median": 0.10} #, "tgb_rank": 0.10} return weights def cliInterface(imgDef=False): import argparse parser = argparse.ArgumentParser(description='TODO: Write Description.') parser.add_argument('--keep-priv', action="store_true") parser.add_argument('--keep-whitepapers', action="store_true") parser.add_argument('--remove-read', action="store_true") parser.add_argument('--remove-unread', action="store_true") parser.add_argument('--no-web', action="store_true") parser.add_argument('--no-list', action="store_true") parser.add_argument('--remove-edge', action="store_true") parser.add_argument('--keep-top-lists', action="store_true") parser.add_argument('--keep-useless-recommenders', action="store_true") parser.add_argument('--dark', action="store_true") parser.add_argument('--v3d', action="store_true") if imgDef: parser.add_argument('--no-imgs', action="store_true") else: parser.add_argument('--imgs', action="store_true") parser.add_argument('--perf-test', action="store_true") parser.add_argument('--train', action="store_true") cmds = parser.add_subparsers(required=True, dest='cmd') p_rec = cmds.add_parser('recommend', description="TODO", aliases=['rec']) p_rec.add_argument('-n', type=int, default=20, help='number of books to recommend') p_rec.add_argument('--tag-based', action="store_true") p_rec.add_argument('--recommender-based', action="store_true") p_rec.add_argument('--new', type=int, default=-1, help='number of new books to recommend') p_rec = cmds.add_parser('listScores', description="TODO", aliases=['ls']) p_rec.add_argument('-n', type=int, default=50, help='number of books to recommend') p_read = cmds.add_parser('read', description="TODO", aliases=[]) p_read.add_argument('--min-rating', type=int, default=0) p_read.add_argument('--all-tags', action="store_true") p_read.add_argument('--only-connected', action="store_true") p_show = cmds.add_parser('analyze', description="TODO", aliases=[]) p_show.add_argument('type', choices=['any', 'book', 'recommender', 'author', 'series', 'tag']) p_show.add_argument('name', type=str) p_show.add_argument('-d', type=float, default=2.1, help='depth of expansion') p_train = cmds.add_parser('train', description="TODO", aliases=[]) p_train.add_argument('-g', type=float, default=0.2, help='learning rate gamma') p_train.add_argument('--full', action="store_true") p_prog = cmds.add_parser('progress', description="TODO", aliases=[]) p_prog.add_argument('-m', type=float, default=7, help='Mimimum Score to read') p_comp = cmds.add_parser('competence', description="TODO", aliases=[]) p_shell = cmds.add_parser('shell', description="TODO", aliases=[]) p_new = cmds.add_parser('newBooks', description="TODO", aliases=[]) p_new.add_argument('-n', type=int, default=10, help='number of books to recommend') p_col = cmds.add_parser('calice', description="TODO", aliases=[]) p_full = cmds.add_parser('full', description="TODO", aliases=[]) args = parser.parse_args() if imgDef: args.imgs = not args.no_imgs if args.perf_test: perfTestCLI(args) else: mainCLI(args) def perfTestCLI(args): import time from pycallgraph import PyCallGraph from pycallgraph import Config from pycallgraph import GlobbingFilter from pycallgraph.output import GraphvizOutput config = Config() config.trace_filter = GlobbingFilter(exclude=[ "pycallgraph.*", "numpy.*" ]) with PyCallGraph(output=GraphvizOutput(output_file='perfTests/' + str(int(time.time())) + '.png'), config=config): mainCLI(args) def mainCLI(args): if args.cmd=="train": train(args.g, args.full) exit() if args.train: train(0.2, False) bestListT = 'book' G, books = buildFullGraph(darkMode=args.dark) mu, std = genScores(G, books) if not args.keep_whitepapers: removeWhitepapers(G) if args.cmd=="recommend": if args.new==-1: args.new = int(args.n / 5) if args.new != 0: findNewBooks(G, books, mu, args.new, minRecSco = mu-std) if args.tag_based: if args.recommender_based: raise Exception('tag-based and recommender-based can not be be combined') recommendNBooksTagBased(G, mu, std, args.n, not args.keep_top_lists) elif args.recommender_based: recommendNBooksRecommenderBased(G, mu, std, args.n, not args.keep_top_lists, not args.keep_useless_recommenders) else: recommendNBooks(G, mu, std, args.n, not args.keep_top_lists, not args.keep_useless_recommenders, args.v3d) elif args.cmd=="listScores": listScores(G, mu, std, args.n) elif args.cmd=="read": readBooksAnalysis(G, args.min_rating, args.all_tags, args.only_connected, not args.keep_top_lists) elif args.cmd=="analyze": analyze(G, books, mu, args.type, args.name, args.d) elif args.cmd=="full": fullGraph(G, not args.keep_top_lists) elif args.cmd=="competence": bestListT = 'recommender' recommenderCompetence(G) elif args.cmd=="shell": shell(G, books, mu, std) elif args.cmd=="progress": progress(G, books, mu, args.m) return elif args.cmd=="newBooks": bestListT = 'newBook' newBooks(G, books, args.n, mu, std) elif args.cmd=="calice": calice(G) exit() elif args.cmd=="createCaliceColumn": calibreDB.createCaliceColumn() print('[*] Column was created.') print('[i] To allow displaying half-stars, please active them manually in the calibre-settings.') exit() else: raise Exception("Bad") if not args.keep_priv: removePriv(G) if args.remove_read: removeRead(G) elif args.remove_unread: removeUnread(G) removeDangling(G, alsoBooks=True) if args.remove_edge: removeEdge(G) if not args.no_list: printBestList(G, t=bestListT) if not args.no_web and not args.cmd in ['listScores']: if args.v3d: genAndShow3D(G, darkMode=args.dark) else: if args.imgs: addImagesToNodes(G) genAndShowHTML(G, darkMode=args.dark) weights = loadWeights() if __name__ == "__main__": try: cliInterface(imgDef=True) except Error as e: print("[!] {0}".format(e))