CaliGraph/caliGraph.py
2021-10-13 15:43:11 +02:00

997 lines
33 KiB
Python
Executable File

#!./.venv/bin/python3.9
import os
import json
import math
import copy
import random
import numpy as np
from scipy.stats import norm
import matplotlib.pyplot as plt
import networkx as nx
from pyvis.network import Network
def getAllAuthors(books):
authors = set()
for book in books:
for author in getAuthors(book):
authors.add(author)
return list(authors)
def getAuthors(book):
return book['authors'].split(' & ')
def getRecommenders(book):
for tag in book['tags']:
if tag.find(" Recommendation") != -1:
yield tag.replace(" Recommendation", "")
elif tag.find("s Literature Club") != -1:
yield tag.replace("s Literature Club", "")
def getTags(book):
for tag in book['tags']:
if tag.find(" Recommendation") == -1 and tag.find("s Literature Club") == -1 and tag.find(" Top ") == -1:
yield tag
def getAllRecommenders(books):
recs = set()
for book in books:
for rec in getRecommenders(book):
recs.add(rec)
return list(recs)
def getTopLists(book):
lists = set()
for tag in book['tags']:
if tag.find(" Top ") != -1:
lists.add(tag.split(" Top ")[0])
return list(lists)
def getAllTopLists(books):
tops = set()
for book in books:
for top in getTopLists(book):
tops.add(top)
return list(tops)
def getAllSeries(books):
series = set()
for book in books:
if 'series' in book:
series.add(book['series'])
return list(series)
def getAllTags(books):
tags = set()
for book in books:
for tag in getTags(book):
tags.add(tag)
return list(tags)
def getTopListWeight(book, topList):
minScope = 100000
for tag in book['tags']:
if tag.find(topList+" Top ") != -1:
scope = int(tag.split(" Top ")[1])
minScope = min(minScope, scope)
if minScope == 100000:
raise Exception("You stupid?")
if minScope == 10:
return 1
elif minScope == 25:
return 0.85
elif minScope == 100:
return 0.5
return 50 / minScope
def removeRead(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book':
if node['rating'] != None:
G.remove_node(n)
def removeUnread(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book':
if node['rating'] == None:
G.remove_node(n)
def removePriv(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book':
if 'priv' in node['tags']:
G.remove_node(n)
def removeDangling(G, alsoBooks=False):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] != 'book' or alsoBooks:
if not len(G.adj[n]):
G.remove_node(n)
def removeEdge(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] != 'book':
if len(G.adj[n]) < 2:
G.remove_node(n)
def removeBad(G, threshold, groups=['book', 'topList', 'recommender', 'author', 'series', 'tag']):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] in groups:
if 'score' in node and (node['score'] == None or node['score'] < threshold):
G.remove_node(n)
def removeKeepBest(G, num, maxDistForRead=1):
bestlist = []
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book':
if 'score' in node and node['score'] != None:
bestlist.append(node)
bestlist.sort(key=lambda node: node['score'], reverse=True)
bestlist = bestlist[:num]
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book' and node not in bestlist or 'score' in node and node['score'] == None:
if not 'rating' in node or node['rating'] == None or node['rating'] < bestlist[-1]['score']-maxDistForRead:
G.remove_node(n)
def removeTags(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'tag':
G.remove_node(n)
def pruneTags(G, minCons=2):
for n in sorted(list(G.nodes), key=lambda i: G.nodes[i]['score'] + len(G.nodes[i]['feedbacks'])/5 if 'score' in G.nodes[i] and 'feedbacks' in G.nodes[i] else 0):
node = G.nodes[n]
if node['t'] == 'tag':
foundCon = 0
for book in G.adj[n]:
for con in G.adj[book]:
conType = G.nodes[con]['t']
if conType not in ['topList']:
if conType in ['recommender']:
foundCon += 0.5
elif conType in ['tag', 'series']:
foundCon += 0.25
else:
foundCon += 1
if foundCon > minCons:
G.remove_node(n)
def pruneRecommenders(G, minCons=2):
for n in sorted(list(G.nodes), key=lambda i: G.nodes[i]['score'] if 'score' in G.nodes[i] else 0):
node = G.nodes[n]
if node['t'] == 'recommender':
foundCon = 0
for book in G.adj[n]:
for con in G.adj[book]:
conType = G.nodes[con]['t']
if conType not in ['topList']:
if conType in ['recommender']:
foundCon += 0.5
elif conType in ['tag', 'series']:
foundCon += 0.25
else:
foundCon += 1
if foundCon > minCons:
G.remove_node(n)
def pruneRecommenderCons(G, maxCons=5):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'recommender':
if len(G.adj[n]) > maxCons:
bestlist = []
for m in list(G.adj[n]):
book = G.nodes[m]
if book['t'] == 'book':
if 'score' in book and book['score'] != None:
bestlist.append(book)
bestlist.sort(key=lambda node: node['score'], reverse=True)
bestlist = bestlist[:maxCons]
for m in list(G.adj[n]):
book = G.nodes[m]
if book['t'] == 'book' and book not in bestlist or 'score' in book and book['score'] == None:
if not 'rating' in book or book['rating'] == None:
foundCon = 0
for con in G.adj[m]:
if G.nodes[con]['t'] not in ['topList']:
foundCon += 1
if foundCon < 2:
G.remove_node(m)
def pruneAuthorCons(G, maxCons=3):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'author':
if len(G.adj[n]) > maxCons:
bestlist = []
for m in list(G.adj[n]):
book = G.nodes[m]
if book['t'] == 'book':
if 'score' in book and book['score'] != None:
bestlist.append(book)
bestlist.sort(key=lambda node: node['score'], reverse=True)
bestlist = bestlist[:maxCons]
for m in list(G.adj[n]):
book = G.nodes[m]
if book['t'] == 'book' and book not in bestlist or 'score' in book and book['score'] == None:
if not 'rating' in book or book['rating'] == None:
foundCon = 0
for con in G.adj[m]:
if G.nodes[con]['t'] not in ['topList']:
foundCon += 1
if foundCon < 2:
G.remove_node(m)
def removeHighSpanTags(G, maxCons=5):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'tag':
if len(G.adj[n]) > maxCons:
G.remove_node(n)
def removeHighSpanReadBooks(G, maxCons=8):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book' and node['rating'] != None:
if sum([1 for adj in G.adj[n] if G.nodes[adj]['t']=='recommender']) > maxCons:
G.remove_node(n)
def removeTopLists(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'topList':
G.remove_node(n)
def removeRecommenders(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'recommender':
G.remove_node(n)
def removeRestOfSeries(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'series':
seriesState = 0
for adj in G.adj[n]:
adjNode = G.nodes[adj]
if adjNode['rating'] != None:
seriesState = max(seriesState, int(
adjNode['series_index']))
for adj in list(G.adj[n]):
adjNode = G.nodes[adj]
if adjNode['series_index'] > seriesState + 1.0001:
G.remove_node(adj)
def removeUnusedRecommenders(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'recommender':
for adj in G.adj[n]:
adjNode = G.nodes[adj]
if adjNode['t']=='book' and 'score' in adjNode:
break
else: # No unrated recommendation
G.remove_node(n)
def removeUselessReadBooks(G):
minForce = 1.5
minContact = 2
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book' and node['rating'] != None:
force = 0
contacts = 0
for adj in G.adj[n]:
adjNode = G.nodes[adj]
contacts += 1
for cousin in G.adj[adj]:
cousinNode = G.nodes[cousin]
if cousinNode['t']=='book' and 'score' in cousinNode:
if adjNode['t']=='recommender':
force += 0.5
else:
force += 1
if force < minForce or contacts < minContact:
G.remove_node(n)
def removeUselessTags(G, minUnread=1):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'tag':
foundUnread = 0
for adj in G.adj[n]:
adjNode = G.nodes[adj]
if adjNode['t']=='book' and 'score' in adjNode:
foundUnread += 1
if foundUnread < minUnread:
G.remove_node(n)
def removeUselessSeries(G, minSco=0):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'series':
if len(G.adj[n]) < 2 or node['score'] < minSco:
G.remove_node(n)
def scoreOpinions(G, globMu, globStd):
for n in list(G.nodes):
node = G.nodes[n]
feedbacks = []
if node['t'] not in ['book']:
adjacens = list(G.adj[n].keys())
for adj in adjacens:
adjNode = G.nodes[adj]
if adjNode['rating'] != None:
feedbacks.append(adjNode['rating'])
if len(feedbacks):
node['mean'], node['std'] = norm.fit(feedbacks)
node['se'] = globStd / math.sqrt(len(feedbacks))
ratio = len(feedbacks) / len(adjacens)
node['score'] = node['mean']
node['feedbacks'] = feedbacks
else:
node['score'] = None
def scoreUnread(G, globMu, globStd):
for n in list(G.nodes):
feedbacks = [globMu]
ws = [['mu']]
node = G.nodes[n]
if node['t'] == 'book':
if node['rating'] == None:
adjacens = list(G.adj[n].keys())
cats = {}
for cat in weights.keys():
cats[cat] = []
for adj in adjacens:
adjNode = G.nodes[adj]
if 'score' in adjNode and adjNode['score'] != None:
w = [adjNode['t'], G[n][adj]['weight'] if 'weight' in G[n][adj] else 1]
for fb in adjNode['feedbacks']:
feedbacks.append(fb)
ws.append(w)
cats[adjNode['t']].append(fb)
if len(feedbacks):
node['mean'], node['std'] = norm.fit(feedbacks)
node['se'] = globStd / math.sqrt(len(feedbacks))
feedbacks.append(node['std'])
ws.append(['sigma'])
feedbacks.append(node['se'])
ws.append(['se'])
feedbacks.append(globMu)
ws.append(['bias'])
linScore = sum([fb*getWeightForType(w[0], w[1] if len(w)>1 else 1) for fb, w in zip(feedbacks, ws)])/sum([getWeightForType(w[0], w[1] if len(w)>1 else 1) for w in ws])
catWeightSum = sum([getWeightForType(c, 1) if cats[c] != [globMu] else 0 for c in weights])
catScores = [(sum(cats[c])/len(cats[c])) * getWeightForType(c, 1) for c in cats if len(cats[c])]
if len(catScores):
normScore = sum(catScores)/len(catScores)
else:
normScore = globMu
#print(catScores)
#print(linScore, normScore)
normF = getWeightForType('norm', 1)
normF = 1
node['score'] = linScore * (1-normF) + normScore * normF
node['_act'] = feedbacks
node['_wgh'] = ws
else:
node['score'] = globMu + errorFac*globStd + len(feedbacks)*0.0000000001
if 'series' in node:
if node['series_index'] == 1.0:
node['score'] += 0.000000001
def getWeightForType(nodeType, edgeWeight=1):
global weights
w = weights[nodeType]
if nodeType == 'topList':
return edgeWeight*w
else:
return w
def printBestList(G, num=-1):
bestlist = []
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book':
if 'score' in node and node['score'] != None:
bestlist.append(node)
bestlist.sort(key=lambda node: node['score'], reverse=True)
for i, book in enumerate(bestlist):
print("["+str(i+1).zfill(int((math.log10(num) if num!=-1 else 3)+1))+"] "+book['title'] +
" ("+" & ".join(book['authors'])+"): {:.5f}".format(book['score']))
if num!=-1 and i == num-1:
break
def readColor(book):
if 'rating' in book:
return 'green'
else:
return 'gray'
def loadBooksFromDB():
return json.loads(os.popen("calibredb list --for-machine -f all").read())
def buildBookGraph(books, darkMode=False):
G = nx.Graph()
# Books
for book in books:
if 'rating' in book:
rating = book['rating']
else:
rating = None
if 'comments' in book:
desc = '' # book['comments']
else:
desc = ''
if 'series' in book:
series = book['series']
series_index = book['series_index']
else:
series = None
series_index = None
G.add_node(book['id'], t='book', label=book['title'], title=book['title'], shape='image', image=book['cover'], rating=rating,
tags=book['tags'], desc=desc, isbn=book['isbn'], files=book['formats'], authors=getAuthors(book), series=series, series_index=series_index)
return G
def graphAddAuthors(G, books, darkMode=False):
for author in getAllAuthors(books):
G.add_node('a/'+author, color='green', t='author', label=author)
for book in books:
for author in getAuthors(book):
G.add_edge('a/'+author, book['id'], color=readColor(book))
return G
def graphAddRecommenders(G, books, darkMode=False):
for rec in getAllRecommenders(books):
G.add_node('r/'+rec, color='orange', t='recommender', label=rec)
for book in books:
for rec in getRecommenders(book):
G.add_edge('r/'+rec, book['id'], color=readColor(book))
return G
def graphAddTopLists(G, books, darkMode=False):
for tl in getAllTopLists(books):
G.add_node('t/'+tl, color='yellow', t='topList', label=tl)
for book in books:
for top in getTopLists(book):
G.add_edge('t/'+top, book['id'], weight=getTopListWeight(
book, top), color=readColor(book))
return G
def graphAddSeries(G, books, darkMode=False):
for series in getAllSeries(books):
G.add_node('s/'+series, color='red', t='series', label=series, shape='triangle')
for book in books:
if 'series' in book:
G.add_edge('s/'+book['series'], book['id'], color=readColor(book))
return G
def graphAddTags(G, books, darkMode=False):
for tag in getAllTags(books):
G.add_node('t/'+tag, color=['lightGray','darkgray'][darkMode], t='tag', label=tag, shape='box')
for book in books:
for tag in getTags(book):
G.add_edge('t/'+tag, book['id'], color=readColor(book))
return G
def calcRecDist(G, books):
globRatings = []
for book in books:
if G.nodes[book['id']]['rating'] != None:
globRatings.append(G.nodes[book['id']]['rating'])
return norm.fit(globRatings)
def scaleBooksByRating(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] not in []:
if 'rating' in node and node['rating'] != None:
node['value'] = 20 + 5 * int(node['rating'])
else:
if 'score' in node and node['score'] != None:
node['value'] = 20 + 5 * int(node['score'])
else:
node['value'] = 15
def scaleOpinionsByRating(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] in ['topList', 'recommender', 'author', 'series']:
if 'score' in node and node['score'] != None:
node['value'] = 20 + 5 * int(node['score'])
else:
node['value'] = 20
def addScoreToLabels(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] not in ['tag']:
if 'rating' in node and node['rating'] != None:
node['label'] += " ("+str(node['rating'])+")"
else:
if 'score' in node and node['score'] != None and 'se' in node:
node['label'] += " ({:.2f}±{:.1f})".format(node['score'], node['se'])
else:
node['label'] += " (0±∞)"
def genAndShowHTML(G, showButtons=False, darkMode=False, arrows=False):
net = Network('1080px', '1920px',
directed=arrows,
bgcolor=['#FFFFFF','#181818'][darkMode])
if showButtons:
net.show_buttons(filter_=['configure', 'layout',
'interaction', 'physics', 'edges'])
net.from_nx(G)
net.show('nx.html')
def buildFullGraph(darkMode=False):
books = loadBooksFromDB()
G = buildBookGraph(books, darkMode=darkMode)
graphAddAuthors(G, books, darkMode=darkMode)
graphAddRecommenders(G, books, darkMode=darkMode)
graphAddTopLists(G, books, darkMode=darkMode)
graphAddSeries(G, books, darkMode=darkMode)
graphAddTags(G, books, darkMode=darkMode)
return G, books
def genScores(G, books):
globMu, globStd = calcRecDist(G, books)
scoreOpinions(G, globMu, globStd)
scoreUnread(G, globMu, globStd)
return globMu, globStd
def recommendNBooksRecommenderBased(G, mu, std, n, removeTopListsB=True, removeUselessRecommenders=True):
removeRestOfSeries(G)
removeBad(G, mu-std*2-1)
removeKeepBest(G, int(n*2) + 5, maxDistForRead=2)
removeEdge(G)
removeHighSpanTags(G, 6)
removeDangling(G, alsoBooks=False)
pruneTags(G, 10)
removeBad(G, mu, groups=['book'])
removeUselessReadBooks(G)
pruneTags(G, 6)
pruneRecommenderCons(G, int(n/7)+1)
pruneAuthorCons(G, int(n/15))
removeUselessTags(G)
if removeTopListsB:
removeTopLists(G)
removeDangling(G, alsoBooks=True)
removeKeepBest(G, n+math.ceil(n/20), maxDistForRead=1.5)
removeEdge(G)
removeDangling(G, alsoBooks=True)
removeUselessReadBooks(G)
if removeUselessRecommenders:
removeUnusedRecommenders(G)
removeDangling(G, alsoBooks=True)
removeKeepBest(G, n, maxDistForRead=1.25)
scaleBooksByRating(G)
scaleOpinionsByRating(G)
addScoreToLabels(G)
def recommendNBooksTagBased(G, mu, std, n, removeTopListsB=True):
removeRestOfSeries(G)
removeBad(G, mu-std*2-1)
removeKeepBest(G, int(n*2) + 5, maxDistForRead=2)
removeEdge(G)
removeHighSpanTags(G, 12)
removeDangling(G, alsoBooks=False)
pruneTags(G, 24)
removeBad(G, mu, groups=['book'])
removeUselessReadBooks(G)
pruneTags(G, 16)
pruneAuthorCons(G, int(n/5))
removeRecommenders(G)
removeUselessTags(G)
if removeTopListsB:
removeTopLists(G)
removeDangling(G, alsoBooks=True)
removeKeepBest(G, n+math.ceil(n/20), maxDistForRead=1.5)
removeUselessReadBooks(G)
removeUselessTags(G)
removeKeepBest(G, n, maxDistForRead=1.25)
scaleBooksByRating(G)
scaleOpinionsByRating(G)
addScoreToLabels(G)
def recommendNBooks(G, mu, std, n, removeTopListsB=True, removeUselessRecommenders=True):
removeRestOfSeries(G)
removeBad(G, mu-std-0.5)
removeBad(G, mu+std/2, groups=['recommender'])
removeKeepBest(G, int(n*2) + 5, maxDistForRead=2)
removeEdge(G)
removeHighSpanTags(G, 10)
removeHighSpanReadBooks(G, 10)
removeDangling(G, alsoBooks=False)
pruneRecommenders(G, 13)
pruneTags(G, 13)
removeBad(G, mu, groups=['book'])
removeUselessReadBooks(G)
pruneTags(G, 12)
pruneAuthorCons(G, int(n/5))
pruneRecommenders(G, 12 - min(5, n/20))
removeUselessSeries(G, mu)
removeUselessTags(G)
if removeTopListsB:
removeTopLists(G)
removeDangling(G, alsoBooks=True)
removeKeepBest(G, n+math.ceil(n/20)+3, maxDistForRead=1.5)
removeEdge(G)
removeKeepBest(G, n+1, maxDistForRead=1.25)
removeUselessSeries(G, mu)
removeUselessTags(G)
removeUselessReadBooks(G)
removeKeepBest(G, n, maxDistForRead=1.25)
scaleBooksByRating(G)
scaleOpinionsByRating(G)
addScoreToLabels(G)
def listScores(G, mu, std, n):
removeRestOfSeries(G)
removeKeepBest(G, n, maxDistForRead=10)
scaleBooksByRating(G)
scaleOpinionsByRating(G)
addScoreToLabels(G)
def fullGraph(G, removeTopListsB=True):
removeEdge(G)
removeHighSpanTags(G, 7)
removeDangling(G, alsoBooks=False)
if removeTopListsB:
removeTopLists(G)
pruneTags(G, 3)
removeDangling(G, alsoBooks=True)
scaleBooksByRating(G)
scaleOpinionsByRating(G)
addScoreToLabels(G)
def readBooksAnalysis(G, minRating=0, showAllTags=True, removeUnconnected=False, removeTopListsB=True):
removeUnread(G)
removeBad(G, minRating)
if not showAllTags:
removeEdge(G)
removeHighSpanTags(G, 15)
removeDangling(G, alsoBooks=removeUnconnected)
if removeTopListsB:
removeTopLists(G)
pruneTags(G, 8)
scaleBooksByRating(G)
scaleOpinionsByRating(G)
addScoreToLabels(G)
def analyze(G, type_name, name, dist=2.7):
from fuzzywuzzy import fuzz
type_ident = type_name[0]
full_name = type_ident + "/" + name
bestRatio, match, n = 0, None, 0
for ni in list(G.nodes):
node = G.nodes[ni]
if node['t'] == type_name or type_name=="any":
if name==node['label'] or full_name==node['label']:
match, n = node, ni
break
ratio = fuzz.ratio(node['label'], name)
if ratio > bestRatio:
bestRatio, match, n = ratio, node, ni
if bestRatio < 70:
print("Best Match: "+match['label'])
menge = set()
waveFlow(G, match, n, dist, menge)
for n in list(G.nodes):
if n not in menge:
G.remove_node(n)
removeHighSpanTags(G, 12)
if dist > 1:
removeDangling(G, True)
scaleBooksByRating(G)
scaleOpinionsByRating(G)
#match['value'] = 100
if not 'shape' in match:
match['shape'] = 'star'
addScoreToLabels(G)
match['label'] = "*"+match['label']+"*"
def waveFlow(G, node, n, dist, menge, firstEdge=False):
if dist <= 0:
return
dist -= 1
if menge==set():
firstEdge=True
if node['t'] in ['topList']:
if firstEdge:
menge.add(n)
return
menge.add(n)
if node['t'] in ['tag']:
if firstEdge:
dist-=0.1
else:
return
bestlist = []
keeplist = []
for m in list(G.adj[n]):
book = G.nodes[m]
if book['t'] not in ['NOTHING']:
if 'score' in book and book['score'] != None:
bestlist.append(book)
elif 'rating' in book and book['rating'] != None:
keeplist.append(book)
else:
book['score'] = 0
bestlist.append(book)
bestlist.sort(key=lambda node: node['score'], reverse=True)
toKeep = min(int(dist*10), math.ceil(len(bestlist) * dist - len(keeplist)*0.5))
if toKeep <= 0:
keeplist.sort(key=lambda node: node['rating'], reverse=True)
keeplist = keeplist[:min(int(dist*10), int(len(keeplist) * dist))]
bestlist = []
else:
bestlist = bestlist[:toKeep]
for m in list(G.adj[n]):
node = G.nodes[m]
if node in bestlist or node in keeplist:
waveFlow(G, node, m, dist, menge, firstEdge=firstEdge)
def evaluateFitness(books, debugPrint=False):
global weights
G = buildBookGraph(books)
graphAddAuthors(G, books)
graphAddRecommenders(G, books)
graphAddTopLists(G, books)
graphAddSeries(G, books)
graphAddTags(G, books)
ratedBooks = [n for n in list(G.nodes) if 'rating' in G.nodes[n] and G.nodes[n]['rating'] != None]
boundsLoss = 0
linSepLoss = []
errSq = []
gradient = {}
for wt in weights:
gradient[wt] = 0
mu, sigma = genScores(G, books)
for b in G.nodes:
if b in ratedBooks:
rating = G.nodes[b]['rating']
G.nodes[b]['rating'] = None
_, _ = genScores(G, books)
if G.nodes[b]['score'] > rating: # over estimated
errSq.append(((rating - G.nodes[b]['score'])**2)*2)
else:
errSq.append((rating - G.nodes[b]['score'])**2)
G.nodes[b]['rating'] = rating
for wt in weights:
scoreB = sum([a*(1.001 if wt==w[0] else 1)*weights[w[0]]*(w[1] if len(w)>1 else 1) for a,w in zip(G.nodes[b]['_act'], G.nodes[b]['_wgh'])])/sum([(1.001 if wt==w[0] else 1)*weights[w[0]]*(w[1] if len(w)>1 else 1) for w in G.nodes[b]['_wgh']])
gradient[wt] += ((rating - G.nodes[b]['score'])**2 - (rating - scoreB)**2)*1000
if 'score' in G.nodes[b] and G.nodes[b]['score'] != None:
score = G.nodes[b]['score']
if score > 10.0:
boundsLoss += (score - 10)**2
elif score < 0.0:
boundsLoss += (score)**2
# reward seperation linearly
linSepLoss.append(abs(score - mu))
regressionLoss = sum([(1-w)**2 for w in weights.values()])
for g in gradient:
gradient[g] /= len(errSq)
if debugPrint:
print(sum(errSq)/len(errSq), 0.005*regressionLoss, 0.2*boundsLoss/len(ratedBooks), 1.0*sum(linSepLoss)/len(linSepLoss))
fit = sum(errSq)/len(errSq) + 0.005*regressionLoss + 0.2*boundsLoss/len(ratedBooks) - 1.0*sum(linSepLoss)/len(linSepLoss)
return fit, gradient
def train(initGamma = 1, full=True):
global weights
if full:
for wt in weights:
weights[wt] = random.random()
gamma = initGamma
books = loadBooksFromDB()
bestWeights = copy.copy(weights)
mse, gradient = evaluateFitness(books)
delta = sum(gradient[g]**2 for g in gradient)
best_mse = mse
stagLen = 0
while gamma > 3.0e-06 and delta > 3.0e-05 or best_mse > 3:
last_mse = mse
print({'mse': mse, 'gamma': gamma, 'delta': delta})
delta = sum(gradient[g]**2 for g in gradient)
for wt in weights:
weights[wt] += gamma*gradient[wt]
mse, gradient = evaluateFitness(books)
if mse < last_mse:
gamma = gamma*1.25
else:
gamma *= 0.25
if mse < best_mse:
saveWeights(weights)
bestWeights = copy.copy(weights)
best_mse = mse
if mse > last_mse:
stagLen += 1
else:
stagLen = 0
if stagLen == 4 or mse > 50:
if full or mse > 10:
stagLen = 0
gamma = initGamma
if random.random() < 0.50:
for wt in weights:
weights[wt] = random.random()
else:
weights = copy.copy(bestWeights)
for wt in weights:
weights[wt] *= 0.975+0.05*random.random()
else:
break
print('Done.')
def saveWeights(weights):
with open('neuralWeights.json', 'w') as f:
f.write(json.dumps(weights))
def loadWeights():
with open('neuralWeights.json', 'r') as f:
weights = json.loads(f.read())
return weights
def cliInterface():
import argparse
parser = argparse.ArgumentParser(description='TODO: Write Description.')
parser.add_argument('--keep-priv', action="store_true")
parser.add_argument('--remove-read', action="store_true")
parser.add_argument('--remove-unread', action="store_true")
parser.add_argument('--no-web', action="store_true")
parser.add_argument('--no-list', action="store_true")
parser.add_argument('--remove-edge', action="store_true")
parser.add_argument('--keep-top-lists', action="store_true")
parser.add_argument('--keep-useless-recommenders', action="store_true")
parser.add_argument('--dark-mode', action="store_true")
cmds = parser.add_subparsers(required=True, dest='cmd')
p_rec = cmds.add_parser('recommend', description="TODO", aliases=['rec'])
p_rec.add_argument('-n', type=int, default=20, help='number of books to recommend')
p_rec.add_argument('--tag-based', action="store_true")
p_rec.add_argument('--recommender-based', action="store_true")
p_rec = cmds.add_parser('listScores', description="TODO", aliases=['ls'])
p_rec.add_argument('-n', type=int, default=50, help='number of books to recommend')
p_read = cmds.add_parser('read', description="TODO", aliases=[])
p_read.add_argument('--min-rating', type=int, default=0)
p_read.add_argument('--all-tags', action="store_true")
p_read.add_argument('--only-connected', action="store_true")
p_show = cmds.add_parser('analyze', description="TODO", aliases=[])
p_show.add_argument('type', choices=['any', 'book', 'recommender', 'author', 'series'])
p_show.add_argument('name', type=str)
p_show.add_argument('-d', type=float, default=2.7, help='depth of expansion')
p_train = cmds.add_parser('train', description="TODO", aliases=[])
p_train.add_argument('-g', type=float, default=1, help='learning rate gamma')
p_train.add_argument('--full', action="store_true")
p_full = cmds.add_parser('full', description="TODO", aliases=[])
args = parser.parse_args()
if args.cmd=="train":
train(args.g, args.full)
exit()
G, books = buildFullGraph(darkMode=args.dark_mode)
mu, std = genScores(G, books)
if args.cmd=="recommend":
if args.tag_based:
if args.recommender_based:
raise Exception('tag-based and recommender-based can not be be combined')
recommendNBooksTagBased(G, mu, std, args.n, not args.keep_top_lists)
elif args.recommender_based:
recommendNBooksRecommenderBased(G, mu, std, args.n, not args.keep_top_lists, not args.keep_useless_recommenders)
else:
recommendNBooks(G, mu, std, args.n, not args.keep_top_lists, not args.keep_useless_recommenders)
elif args.cmd=="listScores":
listScores(G, mu, std, args.n)
elif args.cmd=="read":
readBooksAnalysis(G, args.min_rating, args.all_tags, args.only_connected, not args.keep_top_lists)
elif args.cmd=="analyze":
analyze(G, args.type, args.name, args.d)
elif args.cmd=="full":
fullGraph(G, not args.keep_top_lists)
else:
raise Exception("Bad")
if not args.keep_priv:
removePriv(G)
if args.remove_read:
removeRead(G)
elif args.remove_unread:
removeUnread(G)
removeDangling(G, alsoBooks=True)
if args.remove_edge:
removeEdge(G)
if not args.no_list:
printBestList(G)
if not args.no_web and not args.cmd in ['listScores']:
genAndShowHTML(G, darkMode=args.dark_mode)
weights = loadWeights()
if __name__ == "__main__":
cliInterface()