1102 lines
36 KiB
Python
Executable File
1102 lines
36 KiB
Python
Executable File
#!./.venv/bin/python3.10
|
|
import os
|
|
import re
|
|
import json
|
|
import math
|
|
import copy
|
|
import random
|
|
|
|
import numpy as np
|
|
from scipy.stats import norm
|
|
|
|
import matplotlib.pyplot as plt
|
|
import networkx as nx
|
|
from pyvis.network import Network
|
|
|
|
|
|
def getAllAuthors(books):
|
|
authors = set()
|
|
for book in books:
|
|
for author in getAuthors(book):
|
|
authors.add(author)
|
|
return list(authors)
|
|
|
|
|
|
def getAuthors(book):
|
|
return book['authors'].split(' & ')
|
|
|
|
|
|
def getRecommenders(book):
|
|
for tag in book['tags']:
|
|
if tag.find(" Recommendation") != -1:
|
|
yield tag.replace(" Recommendation", "")
|
|
elif tag.find("s Literature Club") != -1:
|
|
yield tag.replace("s Literature Club", "")
|
|
|
|
|
|
def getTags(book):
|
|
for tag in book['tags']:
|
|
if tag.find(" Recommendation") == -1 and tag.find("s Literature Club") == -1 and tag.find(" Top ") == -1:
|
|
yield tag
|
|
|
|
|
|
def getAllRecommenders(books):
|
|
recs = set()
|
|
for book in books:
|
|
for rec in getRecommenders(book):
|
|
recs.add(rec)
|
|
return list(recs)
|
|
|
|
|
|
def getTopLists(book):
|
|
lists = set()
|
|
for tag in book['tags']:
|
|
if tag.find(" Top ") != -1:
|
|
lists.add(tag.split(" Top ")[0])
|
|
return list(lists)
|
|
|
|
|
|
def getAllTopLists(books):
|
|
tops = set()
|
|
for book in books:
|
|
for top in getTopLists(book):
|
|
tops.add(top)
|
|
return list(tops)
|
|
|
|
|
|
def getAllSeries(books):
|
|
series = set()
|
|
for book in books:
|
|
if 'series' in book:
|
|
series.add(book['series'])
|
|
return list(series)
|
|
|
|
|
|
def getAllTags(books):
|
|
tags = set()
|
|
for book in books:
|
|
for tag in getTags(book):
|
|
tags.add(tag)
|
|
return list(tags)
|
|
|
|
|
|
def getTopListWeight(book, topList):
|
|
minScope = 100000
|
|
for tag in book['tags']:
|
|
if tag.find(topList+" Top ") != -1:
|
|
scope = int(tag.split(" Top ")[1])
|
|
minScope = min(minScope, scope)
|
|
if minScope == 100000:
|
|
raise Exception("You stupid?")
|
|
if minScope == 10:
|
|
return 1
|
|
elif minScope == 25:
|
|
return 0.85
|
|
elif minScope == 100:
|
|
return 0.5
|
|
return 50 / minScope
|
|
|
|
|
|
def removeRead(G):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'book':
|
|
if node['rating'] != None:
|
|
G.remove_node(n)
|
|
|
|
|
|
def removeUnread(G):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'book':
|
|
if node['rating'] == None:
|
|
G.remove_node(n)
|
|
|
|
|
|
def removePriv(G):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'book':
|
|
if 'priv' in node['tags']:
|
|
G.remove_node(n)
|
|
|
|
def removeWhitepapers(G):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'book':
|
|
if 'whitepaper' in node['tags']:
|
|
G.remove_node(n)
|
|
|
|
|
|
def removeDangling(G, alsoBooks=False):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] != 'book' or alsoBooks:
|
|
if not len(G.adj[n]):
|
|
G.remove_node(n)
|
|
|
|
|
|
def removeEdge(G):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] != 'book':
|
|
if len(G.adj[n]) < 2:
|
|
G.remove_node(n)
|
|
|
|
|
|
def removeBad(G, threshold, groups=['book', 'topList', 'recommender', 'author', 'series', 'tag']):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] in groups:
|
|
if 'score' in node and (node['score'] == None or node['score'] < threshold):
|
|
G.remove_node(n)
|
|
|
|
|
|
def removeKeepBest(G, num, maxDistForRead=1):
|
|
bestlist = []
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'book':
|
|
if 'score' in node and node['score'] != None:
|
|
bestlist.append(node)
|
|
bestlist.sort(key=lambda node: node['score'], reverse=True)
|
|
bestlist = bestlist[:num]
|
|
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'book' and node not in bestlist or 'score' in node and node['score'] == None:
|
|
if not 'rating' in node or node['rating'] == None or node['rating'] < bestlist[-1]['score']-maxDistForRead:
|
|
G.remove_node(n)
|
|
|
|
|
|
def removeTags(G):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'tag':
|
|
G.remove_node(n)
|
|
|
|
|
|
def pruneTags(G, minCons=2):
|
|
for n in sorted(list(G.nodes), key=lambda i: G.nodes[i]['score'] + len(G.nodes[i]['feedbacks'])/5 if 'score' in G.nodes[i] and 'feedbacks' in G.nodes[i] else 0):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'tag':
|
|
foundCon = 0
|
|
for book in G.adj[n]:
|
|
for con in G.adj[book]:
|
|
conType = G.nodes[con]['t']
|
|
if conType not in ['topList']:
|
|
if conType in ['recommender']:
|
|
foundCon += 0.5
|
|
elif conType in ['tag', 'series']:
|
|
foundCon += 0.25
|
|
else:
|
|
foundCon += 1
|
|
if foundCon > minCons:
|
|
G.remove_node(n)
|
|
|
|
|
|
def pruneRecommenders(G, minCons=2):
|
|
for n in sorted(list(G.nodes), key=lambda i: G.nodes[i]['score'] if 'score' in G.nodes[i] else 0):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'recommender':
|
|
foundCon = 0
|
|
for book in G.adj[n]:
|
|
for con in G.adj[book]:
|
|
conType = G.nodes[con]['t']
|
|
if conType not in ['topList']:
|
|
if conType in ['recommender']:
|
|
foundCon += 0.5
|
|
elif conType in ['tag', 'series']:
|
|
foundCon += 0.25
|
|
else:
|
|
foundCon += 1
|
|
if foundCon > minCons:
|
|
G.remove_node(n)
|
|
|
|
|
|
def pruneRecommenderCons(G, maxCons=5):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'recommender':
|
|
if len(G.adj[n]) > maxCons:
|
|
bestlist = []
|
|
for m in list(G.adj[n]):
|
|
book = G.nodes[m]
|
|
if book['t'] == 'book':
|
|
if 'score' in book and book['score'] != None:
|
|
bestlist.append(book)
|
|
bestlist.sort(key=lambda node: node['score'], reverse=True)
|
|
bestlist = bestlist[:maxCons]
|
|
|
|
for m in list(G.adj[n]):
|
|
book = G.nodes[m]
|
|
if book['t'] == 'book' and book not in bestlist or 'score' in book and book['score'] == None:
|
|
if not 'rating' in book or book['rating'] == None:
|
|
foundCon = 0
|
|
for con in G.adj[m]:
|
|
if G.nodes[con]['t'] not in ['topList']:
|
|
foundCon += 1
|
|
if foundCon < 2:
|
|
G.remove_node(m)
|
|
|
|
def pruneAuthorCons(G, maxCons=3):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'author':
|
|
if len(G.adj[n]) > maxCons:
|
|
bestlist = []
|
|
for m in list(G.adj[n]):
|
|
book = G.nodes[m]
|
|
if book['t'] == 'book':
|
|
if 'score' in book and book['score'] != None:
|
|
bestlist.append(book)
|
|
bestlist.sort(key=lambda node: node['score'], reverse=True)
|
|
bestlist = bestlist[:maxCons]
|
|
|
|
for m in list(G.adj[n]):
|
|
book = G.nodes[m]
|
|
if book['t'] == 'book' and book not in bestlist or 'score' in book and book['score'] == None:
|
|
if not 'rating' in book or book['rating'] == None:
|
|
foundCon = 0
|
|
for con in G.adj[m]:
|
|
if G.nodes[con]['t'] not in ['topList']:
|
|
foundCon += 1
|
|
if foundCon < 2:
|
|
G.remove_node(m)
|
|
|
|
def removeHighSpanTags(G, maxCons=5):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'tag':
|
|
if len(G.adj[n]) > maxCons:
|
|
G.remove_node(n)
|
|
|
|
|
|
def removeHighSpanReadBooks(G, maxCons=8):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'book' and node['rating'] != None:
|
|
if sum([1 for adj in G.adj[n] if G.nodes[adj]['t']=='recommender']) > maxCons:
|
|
G.remove_node(n)
|
|
|
|
|
|
def removeTopLists(G):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'topList':
|
|
G.remove_node(n)
|
|
|
|
def removeRecommenders(G):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'recommender':
|
|
G.remove_node(n)
|
|
|
|
def removeAuthors(G):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'author':
|
|
G.remove_node(n)
|
|
|
|
def removeSeries(G):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'series':
|
|
G.remove_node(n)
|
|
|
|
def removeRestOfSeries(G):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'series':
|
|
seriesState = 0
|
|
for adj in G.adj[n]:
|
|
adjNode = G.nodes[adj]
|
|
if adjNode['rating'] != None:
|
|
seriesState = max(seriesState, int(
|
|
adjNode['series_index']))
|
|
for adj in list(G.adj[n]):
|
|
adjNode = G.nodes[adj]
|
|
if adjNode['series_index'] > seriesState + 1.0001:
|
|
G.remove_node(adj)
|
|
|
|
def removeUnusedRecommenders(G):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'recommender':
|
|
for adj in G.adj[n]:
|
|
adjNode = G.nodes[adj]
|
|
if adjNode['t']=='book' and 'score' in adjNode:
|
|
break
|
|
else: # No unrated recommendation
|
|
G.remove_node(n)
|
|
|
|
def removeUselessReadBooks(G):
|
|
minForce = 1.5
|
|
minContact = 2
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'book' and node['rating'] != None:
|
|
force = 0
|
|
contacts = 0
|
|
for adj in G.adj[n]:
|
|
adjNode = G.nodes[adj]
|
|
contacts += 1
|
|
for cousin in G.adj[adj]:
|
|
cousinNode = G.nodes[cousin]
|
|
if cousinNode['t']=='book' and 'score' in cousinNode:
|
|
if adjNode['t']=='recommender':
|
|
force += 0.5
|
|
else:
|
|
force += 1
|
|
if force < minForce or contacts < minContact:
|
|
G.remove_node(n)
|
|
|
|
def removeUselessTags(G, minUnread=1):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'tag':
|
|
foundUnread = 0
|
|
for adj in G.adj[n]:
|
|
adjNode = G.nodes[adj]
|
|
if adjNode['t']=='book' and 'score' in adjNode:
|
|
foundUnread += 1
|
|
if foundUnread < minUnread:
|
|
G.remove_node(n)
|
|
|
|
def removeUselessSeries(G, minSco=0):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'series':
|
|
if len(G.adj[n]) < 2 or node['score'] < minSco:
|
|
G.remove_node(n)
|
|
|
|
def scoreOpinions(G, globMu, globStd):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
feedbacks = []
|
|
if node['t'] not in ['book']:
|
|
adjacens = list(G.adj[n].keys())
|
|
for adj in adjacens:
|
|
adjNode = G.nodes[adj]
|
|
if adjNode['rating'] != None:
|
|
feedbacks.append(adjNode['rating'])
|
|
if len(feedbacks):
|
|
node['mean'], node['std'] = norm.fit(feedbacks)
|
|
node['se'] = globStd / math.sqrt(len(feedbacks))
|
|
ratio = len(feedbacks) / len(adjacens)
|
|
node['score'] = node['mean']
|
|
node['feedbacks'] = feedbacks
|
|
else:
|
|
node['score'] = None
|
|
|
|
def scoreUnread(G, globMu, globStd):
|
|
for n in list(G.nodes):
|
|
feedbacks = [globMu]
|
|
ws = [['mu']]
|
|
node = G.nodes[n]
|
|
if node['t'] == 'book':
|
|
if node['rating'] == None:
|
|
adjacens = list(G.adj[n].keys())
|
|
for adj in adjacens:
|
|
adjNode = G.nodes[adj]
|
|
if 'score' in adjNode and adjNode['score'] != None:
|
|
w = [adjNode['t'], G[n][adj]['weight'] if 'weight' in G[n][adj] else 1]
|
|
for fb in adjNode['feedbacks']:
|
|
feedbacks.append(fb)
|
|
ws.append(w)
|
|
if len(feedbacks):
|
|
node['mean'], node['std'] = norm.fit(feedbacks)
|
|
node['se'] = globStd / math.sqrt(len(feedbacks))
|
|
feedbacks.append(node['std'])
|
|
ws.append(['sigma'])
|
|
feedbacks.append(node['se'])
|
|
ws.append(['se'])
|
|
feedbacks.append(globMu)
|
|
ws.append(['bias'])
|
|
node['score'] = sum([fb*getWeightForType(w[0], w[1] if len(w)>1 else 1) for fb, w in zip(feedbacks, ws)])/sum([getWeightForType(w[0], w[1] if len(w)>1 else 1) for w in ws])
|
|
node['_act'] = feedbacks
|
|
node['_wgh'] = ws
|
|
else:
|
|
node['score'] = globMu + errorFac*globStd + len(feedbacks)*0.0000000001
|
|
if 'series' in node:
|
|
if node['series_index'] == 1.0:
|
|
node['score'] += 0.000000001
|
|
|
|
def getWeightForType(nodeType, edgeWeight=1):
|
|
global weights
|
|
w = weights[nodeType]
|
|
if nodeType == 'topList':
|
|
return edgeWeight*w
|
|
else:
|
|
return w
|
|
|
|
def printBestList(G, num=-1):
|
|
bestlist = []
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'book':
|
|
if 'score' in node and node['score'] != None:
|
|
bestlist.append(node)
|
|
bestlist.sort(key=lambda node: node['score'], reverse=True)
|
|
for i, book in enumerate(bestlist):
|
|
print("["+str(i+1).zfill(int((math.log10(num) if num!=-1 else 3)+1))+"] "+book['title'] +
|
|
" ("+" & ".join(book['authors'])+"): {:.5f}".format(book['score']))
|
|
if num!=-1 and i == num-1:
|
|
break
|
|
|
|
|
|
def readColor(book):
|
|
if 'rating' in book:
|
|
return 'green'
|
|
else:
|
|
return 'gray'
|
|
|
|
|
|
def loadBooksFromDB():
|
|
return json.loads(os.popen("calibredb list --for-machine -f all").read())
|
|
|
|
def remove_html_tags(text):
|
|
clean = re.compile('<.*?>')
|
|
return re.sub(clean, '', text)
|
|
|
|
def getKeywords(txt,rake):
|
|
txt = remove_html_tags(txt)
|
|
k = []
|
|
rake.extract_keywords_from_text(txt)
|
|
kws = rake.get_ranked_phrases_with_scores()
|
|
for i,(score,kw) in enumerate(kws):
|
|
l = len(kw.split(' '))
|
|
k.append((score**(1/(l*0.5)),kw))
|
|
k.sort(key=lambda x: x[0],reverse=True)
|
|
minSco = k[0][0]/3*2
|
|
for i,kw in enumerate(k):
|
|
if kw[0] < minSco:
|
|
return [(sco,word.title()) for sco,word in k[:i]]
|
|
return k
|
|
|
|
def buildBookGraph(books, darkMode=False, extractKeywords=True, mergeTags=True):
|
|
G = nx.Graph()
|
|
if extractKeywords:
|
|
from rake_nltk.rake import Rake
|
|
rake = Rake()
|
|
|
|
# Books
|
|
for book in books:
|
|
tags = book['tags']
|
|
if 'rating' in book:
|
|
rating = book['rating']
|
|
else:
|
|
rating = None
|
|
if 'comments' in book:
|
|
desc = book['comments']
|
|
else:
|
|
desc = ''
|
|
if 'comments' in book and extractKeywords:
|
|
keywords = getKeywords(book['comments'],rake)
|
|
else:
|
|
keywords = []
|
|
if mergeTags:
|
|
tags = tags + [word for (score, word) in keywords]
|
|
if 'series' in book:
|
|
series = book['series']
|
|
series_index = book['series_index']
|
|
else:
|
|
series = None
|
|
series_index = None
|
|
G.add_node(book['id'], t='book', label=book['title'], title=book['title'], shape='image', image=book['cover'], rating=rating, tags=tags, keywords=keywords, desc=desc, isbn=book['isbn'], files=book['formats'], authors=getAuthors(book), series=series, series_index=series_index)
|
|
|
|
return G
|
|
|
|
|
|
def graphAddAuthors(G, books, darkMode=False):
|
|
for author in getAllAuthors(books):
|
|
G.add_node('a/'+author, color='green', t='author', label=author)
|
|
for book in books:
|
|
for author in getAuthors(book):
|
|
G.add_edge('a/'+author, book['id'], color=readColor(book))
|
|
return G
|
|
|
|
|
|
def graphAddRecommenders(G, books, darkMode=False):
|
|
for rec in getAllRecommenders(books):
|
|
G.add_node('r/'+rec, color='orange', t='recommender', label=rec)
|
|
for book in books:
|
|
for rec in getRecommenders(book):
|
|
G.add_edge('r/'+rec, book['id'], color=readColor(book))
|
|
return G
|
|
|
|
|
|
def graphAddTopLists(G, books, darkMode=False):
|
|
for tl in getAllTopLists(books):
|
|
G.add_node('t/'+tl, color='yellow', t='topList', label=tl)
|
|
for book in books:
|
|
for top in getTopLists(book):
|
|
G.add_edge('t/'+top, book['id'], weight=getTopListWeight(
|
|
book, top), color=readColor(book))
|
|
return G
|
|
|
|
|
|
def graphAddSeries(G, books, darkMode=False):
|
|
for series in getAllSeries(books):
|
|
G.add_node('s/'+series, color='red', t='series', label=series, shape='triangle')
|
|
for book in books:
|
|
if 'series' in book:
|
|
G.add_edge('s/'+book['series'], book['id'], color=readColor(book))
|
|
return G
|
|
|
|
|
|
def graphAddTags(G, books, darkMode=False):
|
|
for tag in getAllTags(books):
|
|
G.add_node('t/'+tag, color=['lightGray','darkgray'][darkMode], t='tag', label=tag, shape='box')
|
|
for book in books:
|
|
for tag in getTags(book):
|
|
G.add_edge('t/'+tag, book['id'], color=readColor(book))
|
|
return G
|
|
|
|
|
|
def calcRecDist(G, books):
|
|
globRatings = []
|
|
for book in books:
|
|
if G.nodes[book['id']]['rating'] != None:
|
|
globRatings.append(G.nodes[book['id']]['rating'])
|
|
return norm.fit(globRatings)
|
|
|
|
|
|
def scaleBooksByRating(G):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] not in []:
|
|
if 'rating' in node and node['rating'] != None:
|
|
node['value'] = 20 + 5 * int(node['rating'])
|
|
else:
|
|
if 'score' in node and node['score'] != None:
|
|
node['value'] = 20 + 5 * int(node['score'])
|
|
else:
|
|
node['value'] = 15
|
|
|
|
|
|
def scaleOpinionsByRating(G):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] in ['topList', 'recommender', 'author', 'series']:
|
|
if 'score' in node and node['score'] != None:
|
|
node['value'] = 20 + 5 * int(node['score'])
|
|
else:
|
|
node['value'] = 20
|
|
|
|
|
|
def addScoreToLabels(G):
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] not in ['tag']:
|
|
if 'rating' in node and node['rating'] != None:
|
|
node['label'] += " ("+str(node['rating'])+")"
|
|
else:
|
|
if 'score' in node and node['score'] != None and 'se' in node:
|
|
node['label'] += " ({:.2f}±{:.1f})".format(node['score'], node['se'])
|
|
else:
|
|
node['label'] += " (0±∞)"
|
|
|
|
|
|
def genAndShowHTML(G, showButtons=False, darkMode=False, arrows=False):
|
|
net = Network('1080px', '1920px',
|
|
directed=arrows,
|
|
bgcolor=['#FFFFFF','#181818'][darkMode])
|
|
if showButtons:
|
|
net.show_buttons(filter_=['configure', 'layout',
|
|
'interaction', 'physics', 'edges'])
|
|
net.from_nx(G)
|
|
net.show('nx.html')
|
|
|
|
|
|
def buildFullGraph(darkMode=False):
|
|
books = loadBooksFromDB()
|
|
G = buildBookGraph(books, darkMode=darkMode)
|
|
|
|
graphAddAuthors(G, books, darkMode=darkMode)
|
|
graphAddRecommenders(G, books, darkMode=darkMode)
|
|
graphAddTopLists(G, books, darkMode=darkMode)
|
|
graphAddSeries(G, books, darkMode=darkMode)
|
|
graphAddTags(G, books, darkMode=darkMode)
|
|
return G, books
|
|
|
|
|
|
def genScores(G, books):
|
|
globMu, globStd = calcRecDist(G, books)
|
|
scoreOpinions(G, globMu, globStd)
|
|
scoreUnread(G, globMu, globStd)
|
|
return globMu, globStd
|
|
|
|
|
|
def recommendNBooksRecommenderBased(G, mu, std, n, removeTopListsB=True, removeUselessRecommenders=True):
|
|
removeRestOfSeries(G)
|
|
removeBad(G, mu-std*2-1)
|
|
removeKeepBest(G, int(n*2) + 5, maxDistForRead=2)
|
|
removeEdge(G)
|
|
removeHighSpanTags(G, 6)
|
|
removeDangling(G, alsoBooks=False)
|
|
pruneTags(G, 10)
|
|
removeBad(G, mu, groups=['book'])
|
|
removeUselessReadBooks(G)
|
|
pruneTags(G, 6)
|
|
pruneRecommenderCons(G, int(n/7)+1)
|
|
pruneAuthorCons(G, int(n/15))
|
|
removeUselessTags(G)
|
|
if removeTopListsB:
|
|
removeTopLists(G)
|
|
removeDangling(G, alsoBooks=True)
|
|
removeKeepBest(G, n+math.ceil(n/20), maxDistForRead=1.5)
|
|
removeEdge(G)
|
|
removeDangling(G, alsoBooks=True)
|
|
removeUselessReadBooks(G)
|
|
if removeUselessRecommenders:
|
|
removeUnusedRecommenders(G)
|
|
removeDangling(G, alsoBooks=True)
|
|
removeKeepBest(G, n, maxDistForRead=1.25)
|
|
|
|
scaleBooksByRating(G)
|
|
scaleOpinionsByRating(G)
|
|
addScoreToLabels(G)
|
|
|
|
|
|
def recommendNBooksTagBased(G, mu, std, n, removeTopListsB=True):
|
|
removeRestOfSeries(G)
|
|
removeBad(G, mu-std*2-1)
|
|
removeKeepBest(G, int(n*2) + 5, maxDistForRead=2)
|
|
removeEdge(G)
|
|
removeHighSpanTags(G, 12)
|
|
removeDangling(G, alsoBooks=False)
|
|
pruneTags(G, 24)
|
|
removeBad(G, mu, groups=['book'])
|
|
removeUselessReadBooks(G)
|
|
pruneTags(G, 16)
|
|
pruneAuthorCons(G, int(n/5))
|
|
removeRecommenders(G)
|
|
removeUselessTags(G)
|
|
if removeTopListsB:
|
|
removeTopLists(G)
|
|
removeDangling(G, alsoBooks=True)
|
|
removeKeepBest(G, n+math.ceil(n/20), maxDistForRead=1.5)
|
|
removeUselessReadBooks(G)
|
|
removeUselessTags(G)
|
|
removeKeepBest(G, n, maxDistForRead=1.25)
|
|
|
|
scaleBooksByRating(G)
|
|
scaleOpinionsByRating(G)
|
|
addScoreToLabels(G)
|
|
|
|
def recommendNBooks(G, mu, std, n, removeTopListsB=True, removeUselessRecommenders=True):
|
|
removeRestOfSeries(G)
|
|
removeBad(G, mu-std-0.5)
|
|
removeBad(G, mu+std/2, groups=['recommender'])
|
|
removeKeepBest(G, int(n*2) + 5, maxDistForRead=2)
|
|
removeEdge(G)
|
|
removeHighSpanTags(G, 10)
|
|
removeHighSpanReadBooks(G, 10)
|
|
removeDangling(G, alsoBooks=False)
|
|
pruneRecommenders(G, 13)
|
|
pruneTags(G, 13)
|
|
removeBad(G, mu, groups=['book'])
|
|
removeUselessReadBooks(G)
|
|
pruneTags(G, 12)
|
|
pruneAuthorCons(G, int(n/5))
|
|
pruneRecommenders(G, 12 - min(5, n/20))
|
|
removeUselessSeries(G, mu)
|
|
removeUselessTags(G)
|
|
if removeTopListsB:
|
|
removeTopLists(G)
|
|
removeDangling(G, alsoBooks=True)
|
|
removeKeepBest(G, n+math.ceil(n/20)+3, maxDistForRead=1.5)
|
|
removeEdge(G)
|
|
removeKeepBest(G, n+1, maxDistForRead=1.25)
|
|
removeUselessSeries(G, mu)
|
|
removeUselessTags(G)
|
|
removeUselessReadBooks(G)
|
|
removeKeepBest(G, n, maxDistForRead=1.25)
|
|
|
|
scaleBooksByRating(G)
|
|
scaleOpinionsByRating(G)
|
|
addScoreToLabels(G)
|
|
|
|
|
|
def listScores(G, mu, std, n):
|
|
removeRestOfSeries(G)
|
|
removeKeepBest(G, n, maxDistForRead=10)
|
|
|
|
scaleBooksByRating(G)
|
|
scaleOpinionsByRating(G)
|
|
addScoreToLabels(G)
|
|
|
|
|
|
def fullGraph(G, removeTopListsB=True):
|
|
removeEdge(G)
|
|
removeHighSpanTags(G, 7)
|
|
removeDangling(G, alsoBooks=False)
|
|
if removeTopListsB:
|
|
removeTopLists(G)
|
|
pruneTags(G, 3)
|
|
removeDangling(G, alsoBooks=True)
|
|
|
|
scaleBooksByRating(G)
|
|
scaleOpinionsByRating(G)
|
|
addScoreToLabels(G)
|
|
|
|
|
|
def recommenderCompetence(G):
|
|
#removeRead(G)
|
|
removeUnread(G)
|
|
removeTags(G)
|
|
removeAuthors(G)
|
|
removeSeries(G)
|
|
removeTopLists(G)
|
|
|
|
scaleBooksByRating(G)
|
|
scaleOpinionsByRating(G)
|
|
addScoreToLabels(G)
|
|
|
|
def readBooksAnalysis(G, minRating=0, showAllTags=True, removeUnconnected=False, removeTopListsB=True):
|
|
removeUnread(G)
|
|
removeBad(G, minRating)
|
|
if not showAllTags:
|
|
removeEdge(G)
|
|
removeHighSpanTags(G, 15)
|
|
removeDangling(G, alsoBooks=removeUnconnected)
|
|
if removeTopListsB:
|
|
removeTopLists(G)
|
|
pruneTags(G, 8)
|
|
|
|
scaleBooksByRating(G)
|
|
scaleOpinionsByRating(G)
|
|
addScoreToLabels(G)
|
|
|
|
def progress(G, minimum=3.5):
|
|
bookCount = 0
|
|
readCount = 0
|
|
toReadCount = 0
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'book':
|
|
bookCount += 1
|
|
if node['rating'] != None:
|
|
readCount += 1
|
|
elif 'score' in node and (node['score'] >= minimum or node['std']==0.0):
|
|
toReadCount += 1
|
|
perc = round(readCount / (toReadCount+readCount) * 100, 2)
|
|
print('Books in libary: '+str(bookCount))
|
|
print('Read Books: '+str(readCount))
|
|
print('Unread Books: '+str(bookCount-readCount))
|
|
print('Recommended Books (score > '+str(round(minimum, 2))+'): '+str(toReadCount))
|
|
print('Progress: '+str(perc)+'%')
|
|
|
|
|
|
def analyze(G, type_name, name, dist=2.7):
|
|
from fuzzywuzzy import fuzz
|
|
type_ident = type_name[0]
|
|
full_name = type_ident + "/" + name
|
|
bestRatio, match, n = 0, None, 0
|
|
for ni in list(G.nodes):
|
|
node = G.nodes[ni]
|
|
if node['t'] == type_name or type_name=="any":
|
|
if name==node['label'] or full_name==node['label']:
|
|
match, n = node, ni
|
|
break
|
|
ratio = fuzz.ratio(node['label'], name)
|
|
if ratio > bestRatio:
|
|
bestRatio, match, n = ratio, node, ni
|
|
if bestRatio < 70:
|
|
print("Best Match: "+match['label'])
|
|
|
|
menge = set()
|
|
waveFlow(G, match, n, dist, menge)
|
|
for n in list(G.nodes):
|
|
if n not in menge:
|
|
G.remove_node(n)
|
|
removeHighSpanTags(G, 12)
|
|
if dist > 1:
|
|
removeDangling(G, True)
|
|
|
|
scaleBooksByRating(G)
|
|
scaleOpinionsByRating(G)
|
|
#match['value'] = 100
|
|
if not 'shape' in match:
|
|
match['shape'] = 'star'
|
|
addScoreToLabels(G)
|
|
match['label'] = "*"+match['label']+"*"
|
|
|
|
def waveFlow(G, node, n, dist, menge, firstEdge=False):
|
|
if dist <= 0:
|
|
return
|
|
dist -= 1
|
|
if menge==set():
|
|
firstEdge=True
|
|
if node['t'] in ['topList']:
|
|
if firstEdge:
|
|
menge.add(n)
|
|
return
|
|
menge.add(n)
|
|
if node['t'] in ['tag']:
|
|
if firstEdge:
|
|
dist-=0.1
|
|
else:
|
|
return
|
|
bestlist = []
|
|
keeplist = []
|
|
for m in list(G.adj[n]):
|
|
book = G.nodes[m]
|
|
if book['t'] not in ['NOTHING']:
|
|
if 'score' in book and book['score'] != None:
|
|
bestlist.append(book)
|
|
elif 'rating' in book and book['rating'] != None:
|
|
keeplist.append(book)
|
|
else:
|
|
book['score'] = 0
|
|
bestlist.append(book)
|
|
bestlist.sort(key=lambda node: node['score'], reverse=True)
|
|
toKeep = min(int(dist*10), math.ceil(len(bestlist) * dist - len(keeplist)*0.5))
|
|
if toKeep <= 0:
|
|
keeplist.sort(key=lambda node: node['rating'], reverse=True)
|
|
keeplist = keeplist[:min(int(dist*10), int(len(keeplist) * dist))]
|
|
bestlist = []
|
|
else:
|
|
bestlist = bestlist[:toKeep]
|
|
|
|
for m in list(G.adj[n]):
|
|
node = G.nodes[m]
|
|
if node in bestlist or node in keeplist:
|
|
waveFlow(G, node, m, dist, menge, firstEdge=firstEdge)
|
|
|
|
def gensimTokensForLines(lines):
|
|
for i, line in enumerate(lines):
|
|
tokens = gensim.utils.simple_preprocess(line)
|
|
if tokens_only:
|
|
yield tokens
|
|
else:
|
|
# For training data, add tags
|
|
yield gensim.models.doc2vec.TaggedDocument(tokens, [i])
|
|
|
|
def buildDoc2Vec(books):
|
|
import gensim
|
|
for n in list(G.nodes):
|
|
node = G.nodes[n]
|
|
if node['t'] == 'book':
|
|
pass
|
|
gensimTokensForLines(lines)
|
|
|
|
def shell(G, books, mu, std):
|
|
from ptpython.repl import embed
|
|
embed(globals(), locals())
|
|
|
|
def evaluateFitness(books, debugPrint=False):
|
|
global weights
|
|
G = buildBookGraph(books)
|
|
graphAddAuthors(G, books)
|
|
graphAddRecommenders(G, books)
|
|
graphAddTopLists(G, books)
|
|
graphAddSeries(G, books)
|
|
graphAddTags(G, books)
|
|
|
|
ratedBooks = [n for n in list(G.nodes) if 'rating' in G.nodes[n] and G.nodes[n]['rating'] != None]
|
|
boundsLoss = 0
|
|
linSepLoss = []
|
|
errSq = []
|
|
gradient = {}
|
|
for wt in weights:
|
|
gradient[wt] = 0
|
|
mu, sigma = genScores(G, books)
|
|
for b in G.nodes:
|
|
if b in ratedBooks:
|
|
rating = G.nodes[b]['rating']
|
|
G.nodes[b]['rating'] = None
|
|
_, _ = genScores(G, books)
|
|
if G.nodes[b]['score'] > rating: # over estimated
|
|
errSq.append(((rating - G.nodes[b]['score'])**2)*2)
|
|
else:
|
|
errSq.append((rating - G.nodes[b]['score'])**2)
|
|
G.nodes[b]['rating'] = rating
|
|
for wt in weights:
|
|
scoreB = sum([a*(1.001 if wt==w[0] else 1)*weights[w[0]]*(w[1] if len(w)>1 else 1) for a,w in zip(G.nodes[b]['_act'], G.nodes[b]['_wgh'])])/sum([(1.001 if wt==w[0] else 1)*weights[w[0]]*(w[1] if len(w)>1 else 1) for w in G.nodes[b]['_wgh']])
|
|
gradient[wt] += ((rating - G.nodes[b]['score'])**2 - (rating - scoreB)**2)*1000
|
|
if 'score' in G.nodes[b] and G.nodes[b]['score'] != None:
|
|
score = G.nodes[b]['score']
|
|
if score > 10.0:
|
|
boundsLoss += (score - 10)**2
|
|
elif score < 0.0:
|
|
boundsLoss += (score)**2
|
|
# reward seperation linearly
|
|
linSepLoss.append(abs(score - mu))
|
|
regressionLoss = sum([(1-w)**2 for w in weights.values()])
|
|
for g in gradient:
|
|
gradient[g] /= len(errSq)
|
|
if debugPrint:
|
|
print(sum(errSq)/len(errSq), 0.005*regressionLoss, 0.2*boundsLoss/len(ratedBooks), 1.0*sum(linSepLoss)/len(linSepLoss))
|
|
fit = sum(errSq)/len(errSq) + 0.005*regressionLoss + 0.2*boundsLoss/len(ratedBooks) - 1.0*sum(linSepLoss)/len(linSepLoss)
|
|
return fit, gradient
|
|
|
|
def train(initGamma, full=True):
|
|
global weights
|
|
if full:
|
|
for wt in weights:
|
|
weights[wt] = random.random()
|
|
gamma = initGamma
|
|
books = loadBooksFromDB()
|
|
bestWeights = copy.copy(weights)
|
|
mse, gradient = evaluateFitness(books)
|
|
delta = sum(gradient[g]**2 for g in gradient)
|
|
best_mse = mse
|
|
stagLen = 0
|
|
goal = 1.0e-4
|
|
if full:
|
|
goal = 1.0e-5
|
|
|
|
while gamma > goal and delta > goal or best_mse > 15:
|
|
last_mse = mse
|
|
print({'mse': mse, 'gamma': gamma, 'delta': delta})
|
|
delta = sum(gradient[g]**2 for g in gradient)
|
|
for wt in weights:
|
|
weights[wt] += gamma*gradient[wt]/math.sqrt(delta)
|
|
mse, gradient = evaluateFitness(books)
|
|
if mse < last_mse:
|
|
gamma = gamma*1.25
|
|
else:
|
|
gamma *= 0.25
|
|
if mse < best_mse:
|
|
saveWeights(weights)
|
|
bestWeights = copy.copy(weights)
|
|
best_mse = mse
|
|
if mse > last_mse:
|
|
stagLen += 1
|
|
else:
|
|
stagLen = 0
|
|
if stagLen == 4 or mse > 50:
|
|
if full or mse > 10:
|
|
stagLen = 0
|
|
gamma = initGamma
|
|
if random.random() < 0.50:
|
|
for wt in weights:
|
|
weights[wt] = random.random()
|
|
else:
|
|
weights = copy.copy(bestWeights)
|
|
for wt in weights:
|
|
weights[wt] *= 0.975+0.05*random.random()
|
|
else:
|
|
break
|
|
print('Done.')
|
|
|
|
def saveWeights(weights):
|
|
with open('neuralWeights.json', 'w') as f:
|
|
f.write(json.dumps(weights))
|
|
|
|
def loadWeights():
|
|
with open('neuralWeights.json', 'r') as f:
|
|
weights = json.loads(f.read())
|
|
return weights
|
|
|
|
def cliInterface():
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(description='TODO: Write Description.')
|
|
parser.add_argument('--keep-priv', action="store_true")
|
|
parser.add_argument('--keep-whitepapers', action="store_true")
|
|
parser.add_argument('--remove-read', action="store_true")
|
|
parser.add_argument('--remove-unread', action="store_true")
|
|
parser.add_argument('--no-web', action="store_true")
|
|
parser.add_argument('--no-list', action="store_true")
|
|
parser.add_argument('--remove-edge', action="store_true")
|
|
parser.add_argument('--keep-top-lists', action="store_true")
|
|
parser.add_argument('--keep-useless-recommenders', action="store_true")
|
|
parser.add_argument('--dark-mode', action="store_true")
|
|
cmds = parser.add_subparsers(required=True, dest='cmd')
|
|
|
|
p_rec = cmds.add_parser('recommend', description="TODO", aliases=['rec'])
|
|
p_rec.add_argument('-n', type=int, default=20, help='number of books to recommend')
|
|
p_rec.add_argument('--tag-based', action="store_true")
|
|
p_rec.add_argument('--recommender-based', action="store_true")
|
|
|
|
p_rec = cmds.add_parser('listScores', description="TODO", aliases=['ls'])
|
|
p_rec.add_argument('-n', type=int, default=50, help='number of books to recommend')
|
|
|
|
p_read = cmds.add_parser('read', description="TODO", aliases=[])
|
|
p_read.add_argument('--min-rating', type=int, default=0)
|
|
p_read.add_argument('--all-tags', action="store_true")
|
|
p_read.add_argument('--only-connected', action="store_true")
|
|
|
|
p_show = cmds.add_parser('analyze', description="TODO", aliases=[])
|
|
p_show.add_argument('type', choices=['any', 'book', 'recommender', 'author', 'series'])
|
|
p_show.add_argument('name', type=str)
|
|
p_show.add_argument('-d', type=float, default=2.7, help='depth of expansion')
|
|
|
|
p_train = cmds.add_parser('train', description="TODO", aliases=[])
|
|
p_train.add_argument('-g', type=float, default=0.1, help='learning rate gamma')
|
|
p_train.add_argument('--full', action="store_true")
|
|
|
|
p_prog = cmds.add_parser('progress', description="TODO", aliases=[])
|
|
p_prog.add_argument('-m', type=float, default=7, help='Mimimum Score to read')
|
|
|
|
p_comp = cmds.add_parser('competence', description="TODO", aliases=[])
|
|
|
|
p_shell = cmds.add_parser('shell', description="TODO", aliases=[])
|
|
|
|
p_full = cmds.add_parser('full', description="TODO", aliases=[])
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.cmd=="train":
|
|
train(args.g, args.full)
|
|
exit()
|
|
|
|
G, books = buildFullGraph(darkMode=args.dark_mode)
|
|
mu, std = genScores(G, books)
|
|
|
|
if not args.keep_whitepapers:
|
|
removeWhitepapers(G)
|
|
|
|
if args.cmd=="recommend":
|
|
if args.tag_based:
|
|
if args.recommender_based:
|
|
raise Exception('tag-based and recommender-based can not be be combined')
|
|
recommendNBooksTagBased(G, mu, std, args.n, not args.keep_top_lists)
|
|
elif args.recommender_based:
|
|
recommendNBooksRecommenderBased(G, mu, std, args.n, not args.keep_top_lists, not args.keep_useless_recommenders)
|
|
else:
|
|
recommendNBooks(G, mu, std, args.n, not args.keep_top_lists, not args.keep_useless_recommenders)
|
|
elif args.cmd=="listScores":
|
|
listScores(G, mu, std, args.n)
|
|
elif args.cmd=="read":
|
|
readBooksAnalysis(G, args.min_rating, args.all_tags, args.only_connected, not args.keep_top_lists)
|
|
elif args.cmd=="analyze":
|
|
analyze(G, args.type, args.name, args.d)
|
|
elif args.cmd=="full":
|
|
fullGraph(G, not args.keep_top_lists)
|
|
elif args.cmd=="competence":
|
|
recommenderCompetence(G)
|
|
elif args.cmd=="shell":
|
|
shell(G, books, mu, std)
|
|
elif args.cmd=="competence":
|
|
recommenderCompetence(G)
|
|
progress(G, args.m)
|
|
return
|
|
else:
|
|
raise Exception("Bad")
|
|
|
|
if not args.keep_priv:
|
|
removePriv(G)
|
|
if args.remove_read:
|
|
removeRead(G)
|
|
elif args.remove_unread:
|
|
removeUnread(G)
|
|
|
|
removeDangling(G, alsoBooks=True)
|
|
|
|
if args.remove_edge:
|
|
removeEdge(G)
|
|
|
|
if not args.no_list:
|
|
printBestList(G)
|
|
if not args.no_web and not args.cmd in ['listScores']:
|
|
genAndShowHTML(G, darkMode=args.dark_mode)
|
|
|
|
|
|
weights = loadWeights()
|
|
if __name__ == "__main__":
|
|
cliInterface()
|