CaliGraph/caliGraph.py

1396 lines
47 KiB
Python
Executable File

#!./.venv/bin/python3.10
import os
import re
import json
import math
import copy
import random
import requests
import numpy as np
import pandas as pd
from scipy.stats import norm
import matplotlib.pyplot as plt
import networkx as nx
from pyvis.network import Network
import plotly.graph_objects as go
import wikipedia
def getAllAuthors(books):
authors = set()
for book in books:
for author in getAuthors(book):
authors.add(author)
return list(authors)
def getAuthors(book):
return book['authors'].split(' & ')
def getRecommenders(book):
recs = set()
for tag in book['tags']:
if tag.find(" Recommendation") != -1:
recs.add(tag.replace(" Recommendation", ""))
elif tag.find("s Literature Club") != -1:
recs.add(tag.replace("s Literature Club", ""))
elif tag.find(":MRB") != -1:
recs.add(tag.replace(":MRB", ""))
return list(recs)
def getTags(book):
for tag in book['tags']:
if tag.find(" Recommendation") == -1 and tag.find("s Literature Club") == -1 and tag.find(" Top ") == -1 and tag.find(":MRB") == -1:
yield tag
def getAllRecommenders(books):
recs = set()
for book in books:
for rec in getRecommenders(book):
recs.add(rec)
return list(recs)
def getTopLists(book):
lists = set()
for tag in book['tags']:
if tag.find(" Top ") != -1:
lists.add(tag.split(" Top ")[0])
return list(lists)
def getAllTopLists(books):
tops = set()
for book in books:
for top in getTopLists(book):
tops.add(top)
return list(tops)
def getAllSeries(books):
series = set()
for book in books:
if 'series' in book:
series.add(book['series'])
return list(series)
def getAllTags(books):
tags = set()
for book in books:
for tag in getTags(book):
tags.add(tag)
return list(tags)
def getTopListWeight(book, topList):
minScope = 100000
for tag in book['tags']:
if tag.find(topList+" Top ") != -1:
scope = int(tag.split(" Top ")[1])
minScope = min(minScope, scope)
if minScope == 100000:
raise Exception("You stupid?")
if minScope == 10:
return 1
elif minScope == 25:
return 0.85
elif minScope == 100:
return 0.5
return 50 / minScope
def removeRead(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book':
if node['rating'] != None:
G.remove_node(n)
def removeUnread(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book':
if node['rating'] == None:
G.remove_node(n)
def removePriv(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book':
if 'priv' in node['tags']:
G.remove_node(n)
def removeWhitepapers(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book':
if 'whitepaper' in node['tags']:
G.remove_node(n)
def removeDangling(G, alsoBooks=False):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] != 'book' or alsoBooks:
if not len(G.adj[n]):
G.remove_node(n)
def removeThinRecs(G, minCons=3):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'recommender':
if not len(G.adj[n]) >= minCons:
G.remove_node(n)
def removeEdge(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] != 'book':
if len(G.adj[n]) < 2:
G.remove_node(n)
def removeBad(G, threshold, groups=['book', 'topList', 'recommender', 'author', 'series', 'tag']):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] in groups:
if 'score' in node and (node['score'] == None or node['score'] < threshold):
G.remove_node(n)
def removeKeepBest(G, num, maxDistForRead=1, forType='book'):
bestlist = []
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == forType:
if 'score' in node and node['score'] != None:
bestlist.append(node)
bestlist.sort(key=lambda node: node['score'], reverse=True)
bestlist = bestlist[:num]
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == forType and node not in bestlist or 'score' in node and node['score'] == None:
if not 'rating' in node or node['rating'] == None or node['rating'] < bestlist[-1]['score']-maxDistForRead:
G.remove_node(n)
def removeTags(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'tag':
G.remove_node(n)
def pruneTags(G, minCons=2):
for n in sorted(list(G.nodes), key=lambda i: G.nodes[i]['score'] + len(G.nodes[i]['feedbacks'])/5 if 'score' in G.nodes[i] and 'feedbacks' in G.nodes[i] else 0):
node = G.nodes[n]
if node['t'] == 'tag':
foundCon = 0
for book in G.adj[n]:
for con in G.adj[book]:
conType = G.nodes[con]['t']
if conType not in ['topList']:
if conType in ['recommender']:
foundCon += 0.5
elif conType in ['tag', 'series']:
foundCon += 0.25
else:
foundCon += 1
if foundCon > minCons:
G.remove_node(n)
def pruneRecommenders(G, minCons=2):
for n in sorted(list(G.nodes), key=lambda i: G.nodes[i]['score'] if 'score' in G.nodes[i] else 0):
node = G.nodes[n]
if node['t'] == 'recommender':
foundCon = 0
for book in G.adj[n]:
for con in G.adj[book]:
conType = G.nodes[con]['t']
if conType not in ['topList']:
if conType in ['recommender']:
foundCon += 0.5
elif conType in ['tag', 'series']:
foundCon += 0.25
else:
foundCon += 1
if foundCon > minCons:
G.remove_node(n)
def pruneRecommenderCons(G, maxCons=5):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'recommender':
if len(G.adj[n]) > maxCons:
bestlist = []
for m in list(G.adj[n]):
book = G.nodes[m]
if book['t'] == 'book':
if 'score' in book and book['score'] != None:
bestlist.append(book)
bestlist.sort(key=lambda node: node['score'], reverse=True)
bestlist = bestlist[:maxCons]
for m in list(G.adj[n]):
book = G.nodes[m]
if book['t'] == 'book' and book not in bestlist or 'score' in book and book['score'] == None:
if not 'rating' in book or book['rating'] == None:
foundCon = 0
for con in G.adj[m]:
if G.nodes[con]['t'] not in ['topList']:
foundCon += 1
if foundCon < 2:
G.remove_node(m)
def pruneAuthorCons(G, maxCons=3):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'author':
if len(G.adj[n]) > maxCons:
bestlist = []
for m in list(G.adj[n]):
book = G.nodes[m]
if book['t'] == 'book':
if 'score' in book and book['score'] != None:
bestlist.append(book)
bestlist.sort(key=lambda node: node['score'], reverse=True)
bestlist = bestlist[:maxCons]
for m in list(G.adj[n]):
book = G.nodes[m]
if book['t'] == 'book' and book not in bestlist or 'score' in book and book['score'] == None:
if not 'rating' in book or book['rating'] == None:
foundCon = 0
for con in G.adj[m]:
if G.nodes[con]['t'] not in ['topList']:
foundCon += 1
if foundCon < 2:
G.remove_node(m)
def removeHighSpanTags(G, maxCons=5):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'tag':
if len(G.adj[n]) > maxCons:
G.remove_node(n)
def removeHighSpanReadBooks(G, maxCons=8):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book' and node['rating'] != None:
if sum([1 for adj in G.adj[n] if G.nodes[adj]['t']=='recommender']) > maxCons:
G.remove_node(n)
def removeTopLists(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'topList':
G.remove_node(n)
def removeRecommenders(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'recommender':
G.remove_node(n)
def removeAuthors(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'author':
G.remove_node(n)
def removeSeries(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'series':
G.remove_node(n)
def removeRestOfSeries(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'series':
seriesState = 0
for adj in G.adj[n]:
adjNode = G.nodes[adj]
if adjNode['rating'] != None:
seriesState = max(seriesState, int(
adjNode['series_index']))
for adj in list(G.adj[n]):
adjNode = G.nodes[adj]
if adjNode['series_index'] > seriesState + 1.0001:
G.remove_node(adj)
def removeUnusedRecommenders(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'recommender':
for adj in G.adj[n]:
adjNode = G.nodes[adj]
if adjNode['t']=='book' and 'score' in adjNode:
break
else: # No unrated recommendation
G.remove_node(n)
def removeUselessReadBooks(G):
minForce = 1.5
minContact = 2
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book' and node['rating'] != None:
force = 0
contacts = 0
for adj in G.adj[n]:
adjNode = G.nodes[adj]
contacts += 1
for cousin in G.adj[adj]:
cousinNode = G.nodes[cousin]
if cousinNode['t']=='book' and 'score' in cousinNode or cousinNode['t'] == 'newBook':
if adjNode['t']=='recommender':
force += 0.5
else:
force += 1
if force < minForce or contacts < minContact:
G.remove_node(n)
def removeUselessTags(G, minUnread=1):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'tag':
foundUnread = 0
for adj in G.adj[n]:
adjNode = G.nodes[adj]
if adjNode['t']=='book' and 'score' in adjNode:
foundUnread += 1
if foundUnread < minUnread:
G.remove_node(n)
def removeUselessSeries(G, minSco=0):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'series':
if len(G.adj[n]) < 2 or node['score'] < minSco:
G.remove_node(n)
def scoreOpinions(G, globMu, globStd):
for n in list(G.nodes):
node = G.nodes[n]
feedbacks = []
if node['t'] not in ['book']:
adjacens = list(G.adj[n].keys())
for adj in adjacens:
adjNode = G.nodes[adj]
if adjNode['rating'] != None:
feedbacks.append(adjNode['rating'])
if len(feedbacks):
node['mean'], node['std'] = norm.fit(feedbacks)
node['se'] = globStd / math.sqrt(len(feedbacks))
ratio = len(feedbacks) / len(adjacens)
node['score'] = node['mean']
node['feedbacks'] = feedbacks
else:
node['score'] = None
def scoreUnread(G, globMu, globStd):
for n in list(G.nodes):
feedbacks = [globMu]
ws = [['mu']]
node = G.nodes[n]
if node['t'] == 'book':
if node['rating'] == None:
adjacens = list(G.adj[n].keys())
for adj in adjacens:
adjNode = G.nodes[adj]
if 'score' in adjNode and adjNode['score'] != None:
w = [adjNode['t'], G[n][adj]['weight'] if 'weight' in G[n][adj] else 1]
for fb in adjNode['feedbacks']:
feedbacks.append(fb)
ws.append(w)
if len(feedbacks):
node['mean'], node['std'] = norm.fit(feedbacks)
node['median'] = np.percentile(feedbacks, [50], method='linear')[0]
node['se'] = globStd / math.sqrt(len(feedbacks))
feedbacks.append(node['pagerank_score'])
ws.append(['pagerank'])
feedbacks.append(node['std'])
ws.append(['sigma'])
#feedbacks.append(node['median'])
#ws.append(['median'])
#feedbacks.append(node['se'])
#ws.append(['se'])
feedbacks.append(globMu)
ws.append(['bias'])
node['score'] = sum([fb*getWeightForType(w[0], w[1] if len(w)>1 else 1) for fb, w in zip(feedbacks, ws)])/sum([getWeightForType(w[0], w[1] if len(w)>1 else 1) for w in ws])
node['_act'] = feedbacks
node['_wgh'] = ws
else:
node['score'] = globMu + errorFac*globStd + len(feedbacks)*0.0000000001
if 'series' in node:
if node['series_index'] == 1.0:
node['score'] += 0.000000001
def getWeightForType(nodeType, edgeWeight=1):
global weights
w = weights[nodeType]
if nodeType == 'topList':
return edgeWeight*w
else:
return w
def printBestList(G, t='book', num=-1):
bestlist = []
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == t:
if 'score' in node and node['score'] != None:
bestlist.append(node)
bestlist.sort(key=lambda node: node['score'] + 0.00001*(node['se'] if 'se' in node else 0), reverse=True)
for i, book in enumerate(bestlist):
if t=='book':
line = book['title'] + " ("+" & ".join(book['authors'])+")"+": {:.5f}".format(book['score'])
else:
line = book['label']
print("["+str(i+1).zfill(int((math.log10(num) if num!=-1 else 3)+1))+"] "+line)
if num!=-1 and i == num-1:
break
def readColor(book):
if 'rating' in book:
return 'green'
else:
return 'gray'
def loadBooksFromDB():
books = loadBooksFromCalibreDB()
infuseDataFromMRB(books)
return books
def mrbGetBook(mrbdf, title, authors):
title = title.split('(')[0]
title = title.replace('*','')
pot = mrbdf[mrbdf['title'].str.contains(title)]
for author in authors:
for part in author.split(" "):
if len(part)>=3:
pot = mrbdf[mrbdf['author'].str.contains(part)]
return pot.to_dict(orient='records')[0] if len(pot) else False
def infuseDataFromMRB(books):
mrbdf = pd.read_csv('mrb_db.csv')
for book in books:
mrb = mrbGetBook(mrbdf, book['title'], book['authors'])
if mrb:
for rec in str(mrb['recommender']).split('|'):
book['tags'] += [rec + ':MRB']
def loadBooksFromCalibreDB():
return json.loads(os.popen("calibredb list --for-machine -f all").read())
def remove_html_tags(text):
clean = re.compile('<.*?>')
return re.sub(clean, '', text)
def getKeywords(txt,rake):
txt = remove_html_tags(txt)
k = []
rake.extract_keywords_from_text(txt)
kws = rake.get_ranked_phrases_with_scores()
for i,(score,kw) in enumerate(kws):
l = len(kw.split(' '))
if kw.lower() not in ['p', 'die', 'best', 'known', 'fk', 'p pp', 'one'] and len(kw)>3 and kw.find('div')==-1 and kw.lower().find('p p')==-1:
k.append((score**(1/(l*0.4)),kw))
k.sort(key=lambda x: x[0],reverse=True)
if k:
minSco = k[0][0]/3*2
for i,kw in enumerate(k):
if kw[0] < minSco:
return [(sco,word.title()) for sco,word in k[:i]]
return k
return []
def runPagerank(G):
try:
scores = nx.pagerank(G=G)
except nx.exception.PowerIterationFailedConvergence:
print('[!] Could not calculate pagerank-scores: Power iteration of the eigenvector calculation did not converge')
print('[ ] Recommendations will be of slighly lower quality')
scores = {}
for n in list(G.nodes):
G.nodes[n]['pagerank_score'] = scores[n] if n in scores else 0
def buildBookGraph(books, darkMode=False, extractKeywords=True, mergeTags=True):
G = nx.Graph()
if extractKeywords:
from rake_nltk.rake import Rake
rake = Rake()
# Books
for book in books:
tags = book['tags']
if 'rating' in book:
rating = book['rating']
else:
rating = None
if 'comments' in book:
desc = book['comments']
else:
desc = ''
if 'comments' in book and extractKeywords:
sanitized = re.sub(r'[^a-zA-Z0-9\s\.äöü]+', '', book['comments']).replace('\n',' ')
keywords = getKeywords(sanitized,rake)
else:
keywords = []
if mergeTags:
tags = tags + [word for (score, word) in keywords]
if 'series' in book:
series = book['series']
series_index = book['series_index']
else:
series = None
series_index = None
G.add_node(book['id'], t='book', label=book['title'], title=book['title'], shape='image', image=book['cover'], rating=rating, tags=tags, keywords=keywords, desc=desc, isbn=book['isbn'], files=book['formats'], authors=getAuthors(book), series=series, series_index=series_index)
return G
def getWikiImage(search_term):
from fuzzywuzzy import fuzz
WIKI_REQUEST = 'http://en.wikipedia.org/w/api.php?action=query&prop=pageimages&format=json&piprop=original&titles='
try:
print('[i] Searching for >'+search_term+'< on WikiPedia...')
result = wikipedia.search(search_term, results = 1)
if fuzz.ratio(search_term, result) < 50:
raise Exception('blub')
wikipedia.set_lang('en')
wkpage = wikipedia.WikipediaPage(title = result[0])
title = wkpage.title
response = requests.get(WIKI_REQUEST+title)
json_data = json.loads(response.text)
img_link = list(json_data['query']['pages'].values())[0]['original']['source']
return img_link
except:
print('[!] No match for '+search_term+' on WikiPedia...')
return None
def graphAddAuthors(G, books, darkMode=False):
for author in getAllAuthors(books):
G.add_node('a/'+author, color='green', t='author', label=author)
for book in books:
for author in getAuthors(book):
G.add_edge('a/'+author, book['id'], color=readColor(book))
return G
def graphAddRecommenders(G, books, darkMode=False):
for rec in getAllRecommenders(books):
G.add_node('r/'+rec, color='orange', t='recommender', label=rec)
for book in books:
for rec in getRecommenders(book):
G.add_edge('r/'+rec, book['id'], color=readColor(book))
return G
def graphAddTopLists(G, books, darkMode=False):
for tl in getAllTopLists(books):
G.add_node('t/'+tl, color='yellow', t='topList', label=tl)
for book in books:
for top in getTopLists(book):
G.add_edge('t/'+top, book['id'], weight=getTopListWeight(
book, top), color=readColor(book))
return G
def graphAddSeries(G, books, darkMode=False):
for series in getAllSeries(books):
G.add_node('s/'+series, color='red', t='series', label=series, shape='triangle')
for book in books:
if 'series' in book:
G.add_edge('s/'+book['series'], book['id'], color=readColor(book))
return G
def graphAddTags(G, books, darkMode=False):
for tag in getAllTags(books):
G.add_node('t/'+tag, color=['lightGray','darkgray'][darkMode], t='tag', label=tag, shape='box')
for book in books:
for tag in getTags(book):
G.add_edge('t/'+tag, book['id'], color=readColor(book))
return G
def calcRecDist(G, books):
globRatings = []
for book in books:
if G.nodes[book['id']]['rating'] != None:
globRatings.append(G.nodes[book['id']]['rating'])
return norm.fit(globRatings)
def scaleBooksByRating(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] not in []:
if 'rating' in node and node['rating'] != None:
node['value'] = 20 + 5 * int(node['rating'])
else:
if 'score' in node and node['score'] != None:
node['value'] = 20 + int(5 * float(node['score']))
else:
node['value'] = 15
def scaleOpinionsByRating(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] in ['topList', 'recommender', 'author', 'series']:
if 'score' in node and node['score'] != None:
node['value'] = 20 + 5 * int(node['score'])
else:
node['value'] = 20
def addScoreToLabels(G):
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] not in ['tag', 'newBook']:
if 'rating' in node and node['rating'] != None:
node['label'] += " ("+str(node['rating'])+")"
else:
if 'score' in node and node['score'] != None and 'se' in node:
node['label'] += " ({:.2f}±{:.1f})".format(node['score'], node['se'])
else:
node['label'] += " (0±∞)"
def genAndShowHTML(G, showButtons=False, darkMode=False, arrows=False):
net = Network('1050px', '1900px',
directed=arrows,
bgcolor=['#FFFFFF','#181818'][darkMode])
if showButtons:
net.show_buttons(filter_=['configure', 'layout',
'interaction', 'physics', 'edges'])
net.from_nx(G)
net.show('nx.html')
def genAndShow3D(G, darkMode=False):
node_sizes = []
node_labels = []
node_cols = []
for n in G.nodes:
node = G.nodes[n]
if node['t']=='tag':
node_cols.append('gray')
elif node['t']=='book':
if 'score' in node: # unread book
node_cols.append('lightblue')
else:
node_cols.append('magenta')
elif 'color' in node:
node_cols.append(node['color'])
else:
node_cols.append('black')
node_labels.append(node['label'])
node_sizes.append((node['value']/8)**1.5)
spring = nx.spring_layout(G,dim=3, seed=random.randint(0, 65536))
x_nodes = [spring[p][0] for p in spring]# x-coordinates of nodes
y_nodes = [spring[p][1] for p in spring]# y-coordinates
z_nodes = [spring[p][2] for p in spring]# z-coordinates
x_edges=[]
y_edges=[]
z_edges=[]
for edge in G.edges():
x_coords = [spring[edge[0]][0],spring[edge[1]][0],None]
x_edges += x_coords
y_coords = [spring[edge[0]][1],spring[edge[1]][1],None]
y_edges += y_coords
z_coords = [spring[edge[0]][2],spring[edge[1]][2],None]
z_edges += z_coords
trace_edges = go.Scatter3d(x=x_edges,
y=y_edges,
z=z_edges,
mode='lines',
line=dict(color='black', width=2),
hoverinfo='none')
trace_nodes = go.Scatter3d(x=x_nodes,
y=y_nodes,
z=z_nodes,
mode='markers',
marker=dict(symbol='circle',
size=node_sizes,
color=node_cols, #color the nodes according to their community
#colorscale=['lightgreen','magenta'], #either green or mageneta
line=dict(color='gray', width=0.5)),
text=node_labels,
hoverinfo='text')
axis = dict(showbackground=False,
showline=False,
zeroline=False,
showgrid=False,
showticklabels=False,
title='')
layout = go.Layout(title="",
width=1920,
height=1080,
plot_bgcolor=['#FFFFFF','#181818'][darkMode],
paper_bgcolor=['#FFFFFF','#181818'][darkMode],
showlegend=False,
scene=dict(xaxis=dict(axis),
yaxis=dict(axis),
zaxis=dict(axis),
),
margin=dict(l=0, r=0, b=0, t=0),
hovermode='closest')
data = [trace_edges, trace_nodes]
fig = go.Figure(data=data, layout=layout)
fig.show()
def buildFullGraph(darkMode=False):
books = loadBooksFromDB()
G = buildBookGraph(books, darkMode=darkMode)
graphAddAuthors(G, books, darkMode=darkMode)
graphAddRecommenders(G, books, darkMode=darkMode)
graphAddTopLists(G, books, darkMode=darkMode)
graphAddSeries(G, books, darkMode=darkMode)
graphAddTags(G, books, darkMode=darkMode)
return G, books
def genScores(G, books, calcPagerank=True):
globMu, globStd = calcRecDist(G, books)
if calcPagerank:
runPagerank(G)
scoreOpinions(G, globMu, globStd)
scoreUnread(G, globMu, globStd)
return globMu, globStd
def addImageToNode(node, cache, shape='circularImage'):
name = node['label'].split(' (')[0]
if not name in cache:
term = name
img = getWikiImage(term)
if img:
cache[name] = img
else:
img = cache[name]
if img:
node['imagePadding'] = '100px'
node['image']=img
node['shape']=shape
def addImagesToNodes(G):
try:
with open('.imgLinkCache.json', 'r') as cf:
cache = json.loads(cf.read())
except IOError:
cache = {}
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] in ['recommender', 'author']:
addImageToNode(node, cache, ['circularImage','image'][node['t']=='author'])
with open('.imgLinkCache.json', 'w') as cf:
cf.write(json.dumps(cache))
def recommendNBooksRecommenderBased(G, mu, std, n, removeTopListsB=True, removeUselessRecommenders=True):
removeRestOfSeries(G)
removeBad(G, mu-std*2-1)
removeKeepBest(G, int(n*2) + 5, maxDistForRead=2)
removeEdge(G)
removeHighSpanTags(G, 6)
removeDangling(G, alsoBooks=False)
pruneTags(G, 10)
removeBad(G, mu, groups=['book'])
removeUselessReadBooks(G)
pruneTags(G, 6)
pruneRecommenderCons(G, int(n/7)+1)
pruneAuthorCons(G, int(n/15))
removeUselessTags(G)
if removeTopListsB:
removeTopLists(G)
removeDangling(G, alsoBooks=True)
removeKeepBest(G, n+math.ceil(n/20), maxDistForRead=1.5)
removeEdge(G)
removeDangling(G, alsoBooks=True)
removeUselessReadBooks(G)
if removeUselessRecommenders:
removeUnusedRecommenders(G)
removeDangling(G, alsoBooks=True)
removeKeepBest(G, n, maxDistForRead=1.25)
scaleBooksByRating(G)
scaleOpinionsByRating(G)
addScoreToLabels(G)
def recommendNBooksTagBased(G, mu, std, n, removeTopListsB=True):
removeRestOfSeries(G)
removeBad(G, mu-std*2-1)
removeKeepBest(G, int(n*2) + 5, maxDistForRead=2)
removeEdge(G)
removeHighSpanTags(G, 12)
removeDangling(G, alsoBooks=False)
pruneTags(G, 24)
removeBad(G, mu, groups=['book'])
removeUselessReadBooks(G)
pruneTags(G, 16)
pruneAuthorCons(G, int(n/5))
removeRecommenders(G)
removeUselessTags(G)
if removeTopListsB:
removeTopLists(G)
removeDangling(G, alsoBooks=True)
removeKeepBest(G, n+math.ceil(n/20), maxDistForRead=1.5)
removeUselessReadBooks(G)
removeUselessTags(G)
removeKeepBest(G, n, maxDistForRead=1.25)
scaleBooksByRating(G)
scaleOpinionsByRating(G)
addScoreToLabels(G)
def recommendNBooks(G, mu, std, n, removeTopListsB=True, removeUselessRecommenders=True):
removeRestOfSeries(G)
removeBad(G, mu-std-0.5)
removeBad(G, mu+std/2, groups=['recommender'])
removeThinRecs(G, 3)
removeKeepBest(G, int(n*2) + 5, maxDistForRead=2)
removeEdge(G)
removeHighSpanTags(G, 8)
removeHighSpanReadBooks(G, 14)
pruneTags(G, 7)
removeDangling(G, alsoBooks=False)
pruneRecommenders(G, 12)
removeThinRecs(G, 3)
removeBad(G, mu, groups=['book'])
removeUselessReadBooks(G)
pruneAuthorCons(G, int(n/5)+3)
pruneRecommenders(G, 12 - min(4, n/20))
removeUselessSeries(G, mu)
removeUselessTags(G)
pruneTags(G, 6)
if removeTopListsB:
removeTopLists(G)
removeDangling(G, alsoBooks=True)
removeKeepBest(G, n+math.ceil(n/20)+3, maxDistForRead=1.5)
removeEdge(G)
removeKeepBest(G, n+2, maxDistForRead=1.25)
removeUselessSeries(G, mu)
removeUselessTags(G)
removeUselessReadBooks(G)
removeKeepBest(G, n, maxDistForRead=1.25)
removeThinRecs(G, 3)
scaleBooksByRating(G)
scaleOpinionsByRating(G)
addScoreToLabels(G)
def listScores(G, mu, std, n):
removeRestOfSeries(G)
removeKeepBest(G, n, maxDistForRead=10)
scaleBooksByRating(G)
scaleOpinionsByRating(G)
addScoreToLabels(G)
def fullGraph(G, removeTopListsB=True):
removeEdge(G)
removeHighSpanTags(G, 7)
removeDangling(G, alsoBooks=False)
if removeTopListsB:
removeTopLists(G)
pruneTags(G, 3)
removeDangling(G, alsoBooks=True)
scaleBooksByRating(G)
scaleOpinionsByRating(G)
addScoreToLabels(G)
def recommenderCompetence(G):
#removeRead(G)
removeUnread(G)
removeTags(G)
removeAuthors(G)
removeSeries(G)
removeTopLists(G)
removeEdge(G)
removeDangling(G, alsoBooks=True)
scaleBooksByRating(G)
scaleOpinionsByRating(G)
addScoreToLabels(G)
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'recommender':
if 'se' in node:
node['score'] -= node['se'] * 1
else:
if not node['score']:
node['score'] = 0
node['score'] /= 2
def readBooksAnalysis(G, minRating=0, showAllTags=True, removeUnconnected=False, removeTopListsB=True):
removeUnread(G)
removeBad(G, minRating)
if not showAllTags:
removeEdge(G)
removeHighSpanTags(G, 15)
removeDangling(G, alsoBooks=removeUnconnected)
if removeTopListsB:
removeTopLists(G)
pruneTags(G, 8)
scaleBooksByRating(G)
scaleOpinionsByRating(G)
addScoreToLabels(G)
def progress(G, minimum=3.5):
bookCount = 0
readCount = 0
toReadCount = 0
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book':
bookCount += 1
if node['rating'] != None:
readCount += 1
elif 'score' in node and (node['score'] >= minimum or node['std']==0.0):
toReadCount += 1
perc = round(readCount / (toReadCount+readCount) * 100, 2)
print('Books in libary: '+str(bookCount))
print('Read Books: '+str(readCount))
print('Unread Books: '+str(bookCount-readCount))
print('Recommended Books (score > '+str(round(minimum, 2))+'): '+str(toReadCount))
print('Progress: '+str(perc)+'%')
def analyze(G, type_name, name, dist=2.1):
from fuzzywuzzy import fuzz
type_ident = type_name[0]
full_name = type_ident + "/" + name
bestRatio, match, n = 0, None, 0
for ni in list(G.nodes):
node = G.nodes[ni]
if node['t'] == type_name or type_name=="any":
if name==node['label'] or full_name==node['label']:
match, n = node, ni
break
ratio = fuzz.ratio(node['label'], name)
if ratio > bestRatio:
bestRatio, match, n = ratio, node, ni
if bestRatio < 70:
print("Best Match: "+match['label'])
menge = set()
waveFlow(G, match, n, dist, menge)
for n in list(G.nodes):
if n not in menge:
G.remove_node(n)
if dist >= 2:
removeThinRecs(G, 2)
removeHighSpanTags(G, 12)
if dist > 1:
removeDangling(G, True)
scaleBooksByRating(G)
scaleOpinionsByRating(G)
#match['value'] = 100
if not 'shape' in match:
match['shape'] = 'star'
addScoreToLabels(G)
match['label'] = "*"+match['label']+"*"
def waveFlow(G, node, n, dist, menge, firstEdge=False):
if dist <= 0:
return
dist -= 1
if menge==set():
firstEdge=True
if node['t'] in ['topList']:
if firstEdge:
menge.add(n)
return
menge.add(n)
if node['t'] in ['tag']:
if firstEdge:
dist-=0.1
else:
return
bestlist = []
keeplist = []
for m in list(G.adj[n]):
book = G.nodes[m]
if book['t'] not in ['NOTHING']:
if 'score' in book and book['score'] != None:
bestlist.append(book)
elif 'rating' in book and book['rating'] != None:
keeplist.append(book)
else:
book['score'] = 0
bestlist.append(book)
bestlist.sort(key=lambda node: node['score'], reverse=True)
toKeep = min(int(dist*10), math.ceil(len(bestlist) * dist - len(keeplist)*0.5))
if toKeep <= 0:
keeplist.sort(key=lambda node: node['rating'], reverse=True)
keeplist = keeplist[:min(int(dist*10), int(len(keeplist) * dist))]
bestlist = []
else:
bestlist = bestlist[:toKeep]
for m in list(G.adj[n]):
node = G.nodes[m]
if node in bestlist or node in keeplist:
waveFlow(G, node, m, dist, menge, firstEdge=firstEdge)
def gensimTokensForLines(lines):
for i, line in enumerate(lines):
tokens = gensim.utils.simple_preprocess(line)
if tokens_only:
yield tokens
else:
# For training data, add tags
yield gensim.models.doc2vec.TaggedDocument(tokens, [i])
def buildDoc2Vec(books):
import gensim
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'book':
pass
gensimTokensForLines(lines)
def shell(G, books, mu, std):
from ptpython.repl import embed
embed(globals(), locals())
def newBooks(G, books, num, mu, std):
removeBad(G, mu-std*2)
findNewBooks(G, books, num, minRecSco = mu-std)
removeUnread(G)
removeUselessReadBooks(G)
removeTags(G)
removeTopLists(G)
removeSeries(G)
removeEdge(G)
removeDangling(G, alsoBooks=True)
scaleBooksByRating(G)
scaleOpinionsByRating(G)
addScoreToLabels(G)
def findNewBooks(G, books, num, minRecSco=5):
removeBad(G, 0.1, groups=['recommender'])
removeThinRecs(G, 2)
mrbdf = pd.read_csv('mrb_db.csv')
recs = []
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'recommender' and 'score' in node:
oldBooks = []
newBooks = []
recBooks = mrbdf[mrbdf['recommender'].str.contains(node['label'])].to_dict(orient='records')
for book in recBooks:
if book['title'] in [b['title'] for b in books]:
oldBooks.append({'title': book['title'], 'author': book['author']})
else:
newBooks.append({'title': book['title'], 'author': book['author']})
recs.append({'name': node['label'], 'rec': node, 'newBooks': newBooks, 'oldBooks': oldBooks})
for rec in recs:
for book in rec['newBooks']:
G.add_node('n/'+book['title'], color='blue', t='newBook', label=book['title'], author=book['author'])
G.add_node('r/'+rec['rec']['label'], color='orange', t='recommender', label=rec['rec']['label'], score=rec['rec']['score'])
G.add_edge('r/'+rec['rec']['label'], 'n/'+book['title'], color='blue')
G.add_node('a/'+book['author'], color='green', t='author', label=book['author'])
G.add_edge('a/'+book['author'], 'n/'+book['title'], color='blue')
for n in list(G.nodes):
node = G.nodes[n]
if node['t'] == 'newBook':
ses = []
scores = []
for m in list(G.adj[n]):
adj = G.nodes[m]
if adj['t'] == 'recommender':
scores.append(adj['score'])
ses.append(adj['se'])
ses.append(min(ses))
if False and len(scores) < 2:
G.remove_node(n)
else:
node['fake_se'] = sum(ses)/(len(ses)**1.2) + 0.5 + 0.5 * (len(scores)==1) # This is not how SE works. DILLIGAF?
node['score'] = sum(scores)/len(scores)*1.2 - node['fake_se']*2 + 0.5 - 0.1/math.sqrt(len(scores))
if len(scores)==1:
node['score']*=0.80
node['value'] = 20 + 5 * float(node['score'])
node['label'] += " ({:.2f}±{:.1f})".format(node['score'], node['fake_se'])
node['label'] += '\n ' + node['author']
removeKeepBest(G, num, 10, 'newBook')
# while batchSize is implemented, we only get a good gonvergence when we disable it (batchSize=-1)
# but might be necessary to enable later for a larger libary for better training performance...
# maybe try again for 128 books?
def evaluateFitness(books, batchSize=-1, debugPrint=False):
global weights
G = buildBookGraph(books)
graphAddAuthors(G, books)
graphAddRecommenders(G, books)
graphAddTopLists(G, books)
graphAddSeries(G, books)
graphAddTags(G, books)
runPagerank(G)
ratedBooks = [n for n in list(G.nodes) if 'rating' in G.nodes[n] and G.nodes[n]['rating'] != None]
boundsLoss = 0
linSepLoss = []
errSq = []
gradient = {}
for wt in weights:
gradient[wt] = 0
mu, sigma = genScores(G, books)
for b in G.nodes:
batch = random.sample(ratedBooks, batchSize) if batchSize!=-1 and len(ratedBooks) > batchSize else ratedBooks
if b in batch:
rating = G.nodes[b]['rating']
G.nodes[b]['rating'] = None
_, _ = genScores(G, books, calcPagerank=False)
if G.nodes[b]['score'] > rating: # over estimated
errSq.append(((rating - G.nodes[b]['score'])**2)*2)
else:
errSq.append((rating - G.nodes[b]['score'])**2)
G.nodes[b]['rating'] = rating
for wt in weights:
scoreB = sum([a*(1.001 if wt==w[0] else 1)*weights[w[0]]*(w[1] if len(w)>1 else 1) for a,w in zip(G.nodes[b]['_act'], G.nodes[b]['_wgh'])])/sum([(1.001 if wt==w[0] else 1)*weights[w[0]]*(w[1] if len(w)>1 else 1) for w in G.nodes[b]['_wgh']])
gradient[wt] += ((rating - G.nodes[b]['score'])**2 - (rating - scoreB)**2)*1000
regressionLoss = sum([max(0,abs(w)-1)**2 for w in weights.values()]) # no punishment if w within -1 and 1
for wt in weights:
if abs(weights[wt]) > 1.0:
gradient[wt] -= weights[wt]*10
else:
gradient[wt] -= weights[wt]*1
for g in gradient:
gradient[g] /= len(errSq)
if debugPrint:
print(sum(errSq)/len(errSq), 0.001*regressionLoss)
fit = sum(errSq)/len(errSq) + 0.001*regressionLoss
return fit, gradient
def train(initGamma, full=True):
global weights
if full:
for wt in weights:
weights[wt] = random.random()
saveWeights(weights)
gamma = initGamma
books = loadBooksFromDB()
bestWeights = copy.copy(weights)
mse, gradient = evaluateFitness(books)
delta = sum(gradient[g]**2 for g in gradient)
best_mse = mse
stagLen = 0
goal = 1.0e-4
if full:
goal = 1.0e-5
while gamma > goal and delta > goal or best_mse > 15:
goal *= 1.1
last_mse = mse
print({'mse': mse, 'gamma': gamma, 'delta': delta})
delta = sum(gradient[g]**2 for g in gradient)
for wt in weights:
weights[wt] += gamma*gradient[wt]/math.sqrt(delta)
mse, gradient = evaluateFitness(books)
if mse < last_mse:
gamma = gamma*1.25
else:
gamma *= 0.25
if mse < best_mse:
saveWeights(weights)
bestWeights = copy.copy(weights)
best_mse = mse
if mse > last_mse:
stagLen += 1
else:
stagLen = 0
if stagLen == 4 or mse > 50:
if full or mse > 10:
stagLen = 0
gamma = initGamma
if random.random() < 0.50:
for wt in weights:
weights[wt] = random.random()*2-0.5
else:
weights = copy.copy(bestWeights)
for wt in weights:
weights[wt] *= 0.975+0.05*random.random()
else:
break
print('Done.')
def saveWeights(weights):
with open('neuralWeights.json', 'w') as f:
f.write(json.dumps(weights))
def loadWeights():
with open('neuralWeights.json', 'r') as f:
weights = json.loads(f.read())
return weights
def cliInterface():
import argparse
parser = argparse.ArgumentParser(description='TODO: Write Description.')
parser.add_argument('--keep-priv', action="store_true")
parser.add_argument('--keep-whitepapers', action="store_true")
parser.add_argument('--remove-read', action="store_true")
parser.add_argument('--remove-unread', action="store_true")
parser.add_argument('--no-web', action="store_true")
parser.add_argument('--no-list', action="store_true")
parser.add_argument('--remove-edge', action="store_true")
parser.add_argument('--keep-top-lists', action="store_true")
parser.add_argument('--keep-useless-recommenders', action="store_true")
parser.add_argument('--dark', action="store_true")
parser.add_argument('--v3d', action="store_true")
parser.add_argument('--imgs', action="store_true")
cmds = parser.add_subparsers(required=True, dest='cmd')
p_rec = cmds.add_parser('recommend', description="TODO", aliases=['rec'])
p_rec.add_argument('-n', type=int, default=20, help='number of books to recommend')
p_rec.add_argument('--tag-based', action="store_true")
p_rec.add_argument('--recommender-based', action="store_true")
p_rec.add_argument('--new', type=int, default=-1, help='number of new books to recommend')
p_rec = cmds.add_parser('listScores', description="TODO", aliases=['ls'])
p_rec.add_argument('-n', type=int, default=50, help='number of books to recommend')
p_read = cmds.add_parser('read', description="TODO", aliases=[])
p_read.add_argument('--min-rating', type=int, default=0)
p_read.add_argument('--all-tags', action="store_true")
p_read.add_argument('--only-connected', action="store_true")
p_show = cmds.add_parser('analyze', description="TODO", aliases=[])
p_show.add_argument('type', choices=['any', 'book', 'recommender', 'author', 'series', 'tag'])
p_show.add_argument('name', type=str)
p_show.add_argument('-d', type=float, default=2.1, help='depth of expansion')
p_train = cmds.add_parser('train', description="TODO", aliases=[])
p_train.add_argument('-g', type=float, default=0.2, help='learning rate gamma')
p_train.add_argument('--full', action="store_true")
p_prog = cmds.add_parser('progress', description="TODO", aliases=[])
p_prog.add_argument('-m', type=float, default=7, help='Mimimum Score to read')
p_comp = cmds.add_parser('competence', description="TODO", aliases=[])
p_shell = cmds.add_parser('shell', description="TODO", aliases=[])
p_new = cmds.add_parser('newBooks', description="TODO", aliases=[])
p_new.add_argument('-n', type=int, default=10, help='number of books to recommend')
p_full = cmds.add_parser('full', description="TODO", aliases=[])
args = parser.parse_args()
if args.cmd=="train":
train(args.g, args.full)
exit()
bestListT = 'book'
G, books = buildFullGraph(darkMode=args.dark)
mu, std = genScores(G, books)
if not args.keep_whitepapers:
removeWhitepapers(G)
if args.cmd=="recommend":
if args.new==-1:
args.new = int(args.n / 5)
if args.new != 0:
findNewBooks(G, books, args.new, minRecSco = mu-std)
if args.tag_based:
if args.recommender_based:
raise Exception('tag-based and recommender-based can not be be combined')
recommendNBooksTagBased(G, mu, std, args.n, not args.keep_top_lists)
elif args.recommender_based:
recommendNBooksRecommenderBased(G, mu, std, args.n, not args.keep_top_lists, not args.keep_useless_recommenders)
else:
recommendNBooks(G, mu, std, args.n, not args.keep_top_lists, not args.keep_useless_recommenders)
elif args.cmd=="listScores":
listScores(G, mu, std, args.n)
elif args.cmd=="read":
readBooksAnalysis(G, args.min_rating, args.all_tags, args.only_connected, not args.keep_top_lists)
elif args.cmd=="analyze":
analyze(G, args.type, args.name, args.d)
elif args.cmd=="full":
fullGraph(G, not args.keep_top_lists)
elif args.cmd=="competence":
bestListT = 'recommender'
recommenderCompetence(G)
elif args.cmd=="shell":
shell(G, books, mu, std)
elif args.cmd=="progress":
progress(G, args.m)
return
elif args.cmd=="newBooks":
bestListT = 'newBook'
newBooks(G, books, args.n, mu, std)
else:
raise Exception("Bad")
if not args.keep_priv:
removePriv(G)
if args.remove_read:
removeRead(G)
elif args.remove_unread:
removeUnread(G)
removeDangling(G, alsoBooks=True)
if args.remove_edge:
removeEdge(G)
if not args.no_list:
printBestList(G, t=bestListT)
if not args.no_web and not args.cmd in ['listScores']:
if args.v3d:
genAndShow3D(G, darkMode=args.dark)
else:
if args.imgs:
addImagesToNodes(G)
genAndShowHTML(G, darkMode=args.dark)
weights = loadWeights()
if __name__ == "__main__":
cliInterface()