
Columbus

We built Project Columbus [1], a framework for trivial 2D OpenAI Gym [2] environments that
are supposed to test an agent’s ability to solve tasks that require different forms of exploration.
The state space is a 2D square. The action space is a 2D circle, which either controls the
agent’s speed or acceleration. Figure 1.1 shows an environment built using Columbus. The
blue dot is the agent; in the top-left, a virtual joystick is displayed, that visualizes the agent’s
current output (section 1.5). The top-right shows a visualization for the CNNObservable
(section 1.4, section 1.5).

Figure 1.1: Example Environment built with Columbus

1



2 Chapter 1 - Columbus

1.1 Entities

Environments contain entities that are described using configuration files. To allow building
environments with more complex dynamics that can not be described by the format used
by the configuration files, new environments can also be added by sub-classing the base
ColumbusEnv class and overriding setup() and expanding __init__().

For many attributes of the environment or the entities, random generation based on defined
bounds is possible. Entities are either spheres or rectangles, everything that is green (’reward’)
gives a configurable reward upon contact, and everything red (’enemy’) gives a configurable
penalty (negative reward) when touched. Auxiliary rewards/penalties can be enabled and are
then calculated automatically. They decrease based on the inverse-square-law when moving
away from rewards/enemies.

1.2 Physics

Entities can be solid, colliding with the agent upon contact. They can also be movable, gaining
speed when pushed by the agent. Collisions between entities (and the agent) can have a
configurable amount of elasticity.

The physics regarding collisions (and some other aspects) is implemented only phenomeno-
logical, allowing non-physical behavior given the right coefficient-setting. (For example:
The ’mass’ of objects does not have to follow a total ordering and collisions can ignore the
conservation of energy to emulate the agent ’kicking’ a ball when colliding.) Using default
coefficients leads to behavior, that looks like real physics.

1.3 Human Interaction

It is possible to run environments in an interactive mode, where the input to the environment
is not provided using the Gym Interface, but instead via mouse input on a virtual joystick.
This allows testing environments for being hard/easy enough or having correctly tuned physics
parameters.

It is also possible to interact with an environment to which an Neural Network (NN) is
connected; overriding the controls to test the agent’s reaction or re-sampling an environment if
it contains random generation is possible.



Section 1.4 - Observation-Space 3

1.4 Observation-Space

The observations emitted by the environment are defined by attaching ’Observables’ to the
environments. Available Observables are:

• StateObservable: Allows giving out the coordinates of designated entities (optionally
relative to the agent) or the speed of entities.

• RayObservable: Generates outputs by casting rays from the agent’s position (comparable
to a LIDAR system). A configurable number of rays and independent channels for
classes of entities.

• CompassObservable: Works like the StateObservable with coordinates relative to the
agent, but we assign a bigger range of possible output values to those, that are close to
zero. We found that agents relying only on a StateObservable often moved close to a
reward and then just jiggled around. The output is described by

𝑜𝑖 = tanh

(
𝑟𝑖

2
√︃∑𝑁

𝑡=0 𝑟
2
𝑖

)
where 𝑟𝑖 = 𝑥𝑖,𝑜𝑏 𝑗𝑒𝑐𝑡 − 𝑥𝑖,𝑎𝑔𝑒𝑛𝑡 .

• CNNObservable: Returns a rendering as a tensor, that has a lower resolution, is zoomed
in, and centered on the agent. (Not used in this thesis)

1.5 Visualizations

Columbus allows adding additional visualizations onto the rendered scene:

• The input received by the agent is displayed as a virtual joystick. In interactive mode,
this can be turned into a usable joystick controlled using the mouse.

• Every observable implements a visualization, that is only dependent on the output
it generated and not on the actual internal state of the environment. This allows
sanity-checking Observables.

• A confidence ellipsoid (1𝜎) of the current covariance produced by the policy can be
rendered around the agent.

• The path taken by the agent through the environment can be drawn.

• For PPO (and TRPL) the value function can be drawn as background for the environment.
Since evaluating the value function for every point of the environment is expensive, the



4 Chapter 1 - Columbus

value map is cached and only re-rendered, when the input perceived by the Observables
could have changed (e.g. a reward was collected and teleported to a new location)

1.6 Columbus as a generic State-Space Simulator

Figure 1.2: State-Space (C-Space) for a 2 DoF robot. Source: [3]

Figure 1.3: State-Space (Loss-Space) for a NN. Source: [4]

All environments that we build with Columbus share the same basic structure: Movement
through a euclidean space, searching for a global optimum (reward) while avoiding low rewards
(enemies) and escaping local optima (dead ends). A Reinforcement Learning (RL)-Problem
comprised of a robot trying to perform a task in an environment with obstacles by controlling
the individual motors looks like a very different environment. But similarly, small movements
through the state-space also result in small movements in the state-space (and observation
space depending on how the observations are formed). We can describe the observation
space as a Riemann-Manifold with local euclidean topology; our actions describe continuous
movement through this observation-space (Figure 1.2). Even training a NN can be regarded
as an agent moving through a space with locally euclidean topology (Figure 1.3). The state
space is in this case spanned by the parameters of the model we wish to train and our action
is the parameter update. Here we also need to escape local optima to reach a minimal loss.



Section 1.6 - Columbus as a generic State-Space Simulator 5

But comparing the state-space of Columbus to that of a NN optimization is probably a stretch
since the topological effects of the hierarchical nature of NN on the state-space are in no way
represented in Columbus.



Bibliography

[1] Roth, D.: Columbus, https://git.dominik-roth.eu/dodox/Columbus

[2] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba,
W.: OpenAI Gym (2016)

[3] Latombe, J.C.: Robot Motion Planning. Springer US, Boston, MA
(1991). https://doi.org/10.1007/978-1-4615-4022-9, http://link.springer.com/10.1007/
978-1-4615-4022-9

[4] Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the Loss Landscape of
Neural Nets p. 11

6

https://git.dominik-roth.eu/dodox/Columbus
http://link.springer.com/10.1007/978-1-4615-4022-9
http://link.springer.com/10.1007/978-1-4615-4022-9

	Columbus
	Entities
	Physics
	Human Interaction
	Observation-Space
	Visualizations
	Columbus as a generic State-Space Simulator

	Bibliography

