Merge pull request #2 from younggyoseo/memory_optimization_for_playground

memory optimization for playground
This commit is contained in:
Younggyo Seo 2025-05-29 00:00:57 -07:00 committed by GitHub
commit 65a55433fc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 112 additions and 36 deletions

View File

@ -98,7 +98,8 @@ python fast_td3/train.py --env_name h1hand-hurdle-v0 --exp_name FastTD3 --render
### MuJoCo Playground Experiments
```bash
conda activate fasttd3_playground
python fast_td3/train.py --env_name G1JoystickRoughTerrain --exp_name FastTD3 --render_interval 5000 --seed 1
python fast_td3/train.py --env_name T1JoystickFlatTerrain --exp_name FastTD3 --render_interval 5000 --seed 1
python fast_td3/train.py --env_name G1JoystickFlatTerrain --exp_name FastTD3 --render_interval 5000 --seed 1
```
### IsaacLab Experiments

View File

@ -15,6 +15,7 @@ class SimpleReplayBuffer(nn.Module):
n_act: int,
n_critic_obs: int,
asymmetric_obs: bool = False,
playground_mode: bool = False,
n_steps: int = 1,
gamma: float = 0.99,
device=None,
@ -22,6 +23,10 @@ class SimpleReplayBuffer(nn.Module):
"""
A simple replay buffer that stores transitions in a circular buffer.
Supports n-step returns and asymmetric observations.
When playground_mode=True, critic_observations are treated as a concatenation of
regular observations and privileged observations, and only the privileged part is stored
to save memory.
"""
super().__init__()
@ -31,6 +36,7 @@ class SimpleReplayBuffer(nn.Module):
self.n_act = n_act
self.n_critic_obs = n_critic_obs
self.asymmetric_obs = asymmetric_obs
self.playground_mode = playground_mode and asymmetric_obs
self.gamma = gamma
self.n_steps = n_steps
self.device = device
@ -52,12 +58,23 @@ class SimpleReplayBuffer(nn.Module):
(n_env, buffer_size, n_obs), device=device, dtype=torch.float
)
if asymmetric_obs:
self.critic_observations = torch.zeros(
(n_env, buffer_size, n_critic_obs), device=device, dtype=torch.float
)
self.next_critic_observations = torch.zeros(
(n_env, buffer_size, n_critic_obs), device=device, dtype=torch.float
)
if self.playground_mode:
# Only store the privileged part of observations (n_critic_obs - n_obs)
self.privileged_obs_size = n_critic_obs - n_obs
self.privileged_observations = torch.zeros(
(n_env, buffer_size, self.privileged_obs_size), device=device, dtype=torch.float
)
self.next_privileged_observations = torch.zeros(
(n_env, buffer_size, self.privileged_obs_size), device=device, dtype=torch.float
)
else:
# Store full critic observations
self.critic_observations = torch.zeros(
(n_env, buffer_size, n_critic_obs), device=device, dtype=torch.float
)
self.next_critic_observations = torch.zeros(
(n_env, buffer_size, n_critic_obs), device=device, dtype=torch.float
)
self.ptr = 0
def extend(
@ -80,9 +97,18 @@ class SimpleReplayBuffer(nn.Module):
self.next_observations[:, ptr] = next_observations
if self.asymmetric_obs:
critic_observations = tensor_dict["critic_observations"]
self.critic_observations[:, ptr] = critic_observations
next_critic_observations = tensor_dict["next"]["critic_observations"]
self.next_critic_observations[:, ptr] = next_critic_observations
if self.playground_mode:
# Extract and store only the privileged part
privileged_observations = critic_observations[:, self.n_obs:]
next_privileged_observations = next_critic_observations[:, self.n_obs:]
self.privileged_observations[:, ptr] = privileged_observations
self.next_privileged_observations[:, ptr] = next_privileged_observations
else:
# Store full critic observations
self.critic_observations[:, ptr] = critic_observations
self.next_critic_observations[:, ptr] = next_critic_observations
self.ptr += 1
def sample(self, batch_size: int):
@ -117,15 +143,30 @@ class SimpleReplayBuffer(nn.Module):
self.n_env * batch_size
)
if self.asymmetric_obs:
critic_obs_indices = indices.unsqueeze(-1).expand(
-1, -1, self.n_critic_obs
)
critic_observations = torch.gather(
self.critic_observations, 1, critic_obs_indices
).reshape(self.n_env * batch_size, self.n_critic_obs)
next_critic_observations = torch.gather(
self.next_critic_observations, 1, critic_obs_indices
).reshape(self.n_env * batch_size, self.n_critic_obs)
if self.playground_mode:
# Gather privileged observations
priv_obs_indices = indices.unsqueeze(-1).expand(-1, -1, self.privileged_obs_size)
privileged_observations = torch.gather(
self.privileged_observations, 1, priv_obs_indices
).reshape(self.n_env * batch_size, self.privileged_obs_size)
next_privileged_observations = torch.gather(
self.next_privileged_observations, 1, priv_obs_indices
).reshape(self.n_env * batch_size, self.privileged_obs_size)
# Concatenate with regular observations to form full critic observations
critic_observations = torch.cat([observations, privileged_observations], dim=1)
next_critic_observations = torch.cat([next_observations, next_privileged_observations], dim=1)
else:
# Gather full critic observations
critic_obs_indices = indices.unsqueeze(-1).expand(
-1, -1, self.n_critic_obs
)
critic_observations = torch.gather(
self.critic_observations, 1, critic_obs_indices
).reshape(self.n_env * batch_size, self.n_critic_obs)
next_critic_observations = torch.gather(
self.next_critic_observations, 1, critic_obs_indices
).reshape(self.n_env * batch_size, self.n_critic_obs)
else:
# Sample base indices
indices = torch.randint(
@ -145,12 +186,23 @@ class SimpleReplayBuffer(nn.Module):
self.n_env * batch_size, self.n_act
)
if self.asymmetric_obs:
critic_obs_indices = indices.unsqueeze(-1).expand(
-1, -1, self.n_critic_obs
)
critic_observations = torch.gather(
self.critic_observations, 1, critic_obs_indices
).reshape(self.n_env * batch_size, self.n_critic_obs)
if self.playground_mode:
# Gather privileged observations
priv_obs_indices = indices.unsqueeze(-1).expand(-1, -1, self.privileged_obs_size)
privileged_observations = torch.gather(
self.privileged_observations, 1, priv_obs_indices
).reshape(self.n_env * batch_size, self.privileged_obs_size)
# Concatenate with regular observations to form full critic observations
critic_observations = torch.cat([observations, privileged_observations], dim=1)
else:
# Gather full critic observations
critic_obs_indices = indices.unsqueeze(-1).expand(
-1, -1, self.n_critic_obs
)
critic_observations = torch.gather(
self.critic_observations, 1, critic_obs_indices
).reshape(self.n_env * batch_size, self.n_critic_obs)
# Create sequential indices for each sample
# This creates a [n_env, batch_size, n_step] tensor of indices
@ -229,14 +281,40 @@ class SimpleReplayBuffer(nn.Module):
final_truncations = self.truncations.gather(1, final_next_obs_indices)
if self.asymmetric_obs:
final_next_critic_observations = self.next_critic_observations.gather(
1,
final_next_obs_indices.unsqueeze(-1).expand(
-1, -1, self.n_critic_obs
),
)
if self.playground_mode:
# Gather final privileged observations
final_next_privileged_observations = self.next_privileged_observations.gather(
1,
final_next_obs_indices.unsqueeze(-1).expand(
-1, -1, self.privileged_obs_size
),
)
# Reshape for output
next_privileged_observations = final_next_privileged_observations.reshape(
self.n_env * batch_size, self.privileged_obs_size
)
# Concatenate with next observations to form full next critic observations
next_observations_reshaped = final_next_observations.reshape(
self.n_env * batch_size, self.n_obs
)
next_critic_observations = torch.cat(
[next_observations_reshaped, next_privileged_observations], dim=1
)
else:
# Gather final next critic observations directly
final_next_critic_observations = self.next_critic_observations.gather(
1,
final_next_obs_indices.unsqueeze(-1).expand(
-1, -1, self.n_critic_obs
),
)
next_critic_observations = final_next_critic_observations.reshape(
self.n_env * batch_size, self.n_critic_obs
)
# Reshape everything to batch dimension
rewards = n_step_rewards.reshape(self.n_env * batch_size)
dones = final_dones.reshape(self.n_env * batch_size)
truncations = final_truncations.reshape(self.n_env * batch_size)
@ -244,11 +322,6 @@ class SimpleReplayBuffer(nn.Module):
self.n_env * batch_size, self.n_obs
)
if self.asymmetric_obs:
next_critic_observations = final_next_critic_observations.reshape(
self.n_env * batch_size, self.n_critic_obs
)
out = TensorDict(
{
"observations": observations,

View File

@ -193,6 +193,7 @@ def main():
n_act=n_act,
n_critic_obs=n_critic_obs,
asymmetric_obs=envs.asymmetric_obs,
playground_mode=env_type == "mujoco_playground",
n_steps=args.num_steps,
gamma=args.gamma,
device=device,

View File

@ -272,6 +272,7 @@
" n_act=n_act,\n",
" n_critic_obs=n_critic_obs,\n",
" asymmetric_obs=envs.asymmetric_obs,\n",
" playground_mode=env_type == \"mujoco_playground\",\n",
" n_steps=args.num_steps,\n",
" gamma=args.gamma,\n",
" device=device,\n",