Support FastTD3 + SimbaV2 (#13)

- Support hyperspherical normalization
- Support loading FastTD3 + SimbaV2 for both training and inference
- Support (experimental) reward normalization that uses SimbaV2's formulation -- not working that well though
- Updated README for FastTD3 + SimbaV2
This commit is contained in:
Younggyo Seo 2025-06-15 12:49:59 -07:00 committed by GitHub
parent 1014bf7e82
commit 6e890eebd2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 712 additions and 49 deletions

View File

@ -10,6 +10,8 @@ For more information, please see our [project webpage](https://younggyo.me/fast_
## ❗ Updates
- **[June/15/2025]** Added support for FastTD3 + SimbaV2! It's faster to train, and often achieves better asymptotic performance.
- **[Jun/6/2025]** Thanks to [Antonin Raffin](https://araffin.github.io/) ([@araffin](https://github.com/araffin)), we fixed the issues when using `n_steps` > 1, which stabilizes training with n-step return quite a lot!
- **[Jun/1/2025]** Updated the figures in the technical report to report deterministic evaluation for IsaacLab tasks.
@ -99,21 +101,29 @@ Please see `fast_td3/hyperparams.py` for information regarding hyperparameters!
### HumanoidBench Experiments
```bash
conda activate fasttd3_hb
# FastTD3
python fast_td3/train.py --env_name h1hand-hurdle-v0 --exp_name FastTD3 --render_interval 5000 --seed 1
# FastTD3 + SimbaV2
python fast_td3/train.py --env_name h1hand-hurdle-v0 --exp_name FastTD3 --render_interval 5000 --agent fasttd3_simbav2 --batch_size 8192 --critic_learning_rate_end 3e-5 --actor_learning_rate_end 3e-5 --weight_decay 0.0 --critic_hidden_dim 512 --critic_num_blocks 2 --actor_hidden_dim 256 --actor_num_blocks 1 --seed 1
```
### MuJoCo Playground Experiments
```bash
conda activate fasttd3_playground
# FastTD3
python fast_td3/train.py --env_name T1JoystickFlatTerrain --exp_name FastTD3 --render_interval 5000 --seed 1
python fast_td3/train.py --env_name G1JoystickFlatTerrain --exp_name FastTD3 --render_interval 5000 --seed 1
# FastTD3 + SimbaV2
python fast_td3/train.py --env_name T1JoystickFlatTerrain --exp_name FastTD3 --render_interval 5000 --agent fasttd3_simbav2 --batch_size 8192 --critic_learning_rate_end 3e-5 --actor_learning_rate_end 3e-5 --weight_decay 0.0 --critic_hidden_dim 512 --critic_num_blocks 2 --actor_hidden_dim 256 --actor_num_blocks 1 --seed 1
```
### IsaacLab Experiments
```bash
conda activate fasttd3_isaaclab
# FastTD3
python fast_td3/train.py --env_name Isaac-Velocity-Flat-G1-v0 --exp_name FastTD3 --render_interval 0 --seed 1
python fast_td3/train.py --env_name Isaac-Repose-Cube-Allegro-Direct-v0 --exp_name FastTD3 --render_interval 0 --seed 1
# FastTD3 + SimbaV2
python fast_td3/train.py --env_name Isaac-Repose-Cube-Allegro-Direct-v0 --exp_name FastTD3 --render_interval 0 --agent fasttd3_simbav2 --batch_size 8192 --critic_learning_rate_end 3e-5 --actor_learning_rate_end 3e-5 --weight_decay 0.0 --critic_hidden_dim 512 --critic_num_blocks 2 --actor_hidden_dim 256 --actor_num_blocks 1 --seed 1
```
**Quick note:** For boolean-based arguments, you can set them to False by adding `no_` in front each argument, for instance, if you want to disable Clipped Q Learning, you can specify `--no_use_cdq` in your command.

View File

@ -1,7 +1,10 @@
import math
import torch
import torch.nn as nn
from .fast_td3_utils import EmpiricalNormalization
from .fast_td3 import Actor
from .fast_td3_simbav2 import Actor as ActorSimbaV2
class Policy(nn.Module):
@ -9,12 +12,18 @@ class Policy(nn.Module):
self,
n_obs: int,
n_act: int,
num_envs: int,
init_scale: float,
actor_hidden_dim: int,
args: dict,
agent: str = "fasttd3",
):
super().__init__()
self.actor = Actor(
self.args = args
num_envs = args["num_envs"]
init_scale = args["init_scale"]
actor_hidden_dim = args["actor_hidden_dim"]
actor_kwargs = dict(
n_obs=n_obs,
n_act=n_act,
num_envs=num_envs,
@ -22,6 +31,31 @@ class Policy(nn.Module):
init_scale=init_scale,
hidden_dim=actor_hidden_dim,
)
if agent == "fasttd3":
actor_cls = Actor
elif agent == "fasttd3_simbav2":
actor_cls = ActorSimbaV2
actor_num_blocks = args["actor_num_blocks"]
actor_kwargs.pop("init_scale")
actor_kwargs.update(
{
"scaler_init": math.sqrt(2.0 / actor_hidden_dim),
"scaler_scale": math.sqrt(2.0 / actor_hidden_dim),
"alpha_init": 1.0 / (actor_num_blocks + 1),
"alpha_scale": 1.0 / math.sqrt(actor_hidden_dim),
"expansion": 4,
"c_shift": 3.0,
"num_blocks": actor_num_blocks,
}
)
else:
raise ValueError(f"Agent {agent} not supported")
self.actor = actor_cls(
**actor_kwargs,
)
self.obs_normalizer = EmpiricalNormalization(shape=n_obs, device="cpu")
self.actor.eval()
@ -45,17 +79,25 @@ def load_policy(checkpoint_path):
)
args = torch_checkpoint["args"]
n_obs = torch_checkpoint["actor_state_dict"]["net.0.weight"].shape[-1]
n_act = torch_checkpoint["actor_state_dict"]["fc_mu.0.weight"].shape[0]
agent = args.get("agent", "fasttd3")
if agent == "fasttd3":
n_obs = torch_checkpoint["actor_state_dict"]["net.0.weight"].shape[-1]
n_act = torch_checkpoint["actor_state_dict"]["fc_mu.0.weight"].shape[0]
elif agent == "fasttd3_simbav2":
# TODO: Too hard-coded, maybe save n_obs and n_act in the checkpoint?
n_obs = (
torch_checkpoint["actor_state_dict"]["embedder.w.w.weight"].shape[-1] - 1
)
n_act = torch_checkpoint["actor_state_dict"]["predictor.mean_bias"].shape[0]
else:
raise ValueError(f"Agent {agent} not supported")
policy = Policy(
n_obs=n_obs,
n_act=n_act,
num_envs=args["num_envs"],
init_scale=args["init_scale"],
actor_hidden_dim=args["actor_hidden_dim"],
args=args,
agent=agent,
)
policy.actor.load_state_dict(torch_checkpoint["actor_state_dict"])
if len(torch_checkpoint["obs_normalizer_state"]) == 0:

View File

@ -0,0 +1,494 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
def l2normalize(
tensor: torch.Tensor, axis: int = -1, eps: float = 1e-8
) -> torch.Tensor:
"""Computes L2 normalization of a tensor."""
return tensor / (torch.linalg.norm(tensor, ord=2, dim=axis, keepdim=True) + eps)
class Scaler(nn.Module):
"""
A learnable scaling layer.
"""
def __init__(
self,
dim: int,
init: float = 1.0,
scale: float = 1.0,
device: torch.device = None,
):
super().__init__()
self.scaler = nn.Parameter(torch.full((dim,), init * scale, device=device))
self.forward_scaler = init / scale
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.scaler * self.forward_scaler * x
class HyperDense(nn.Module):
"""
A dense layer without bias and with orthogonal initialization.
"""
def __init__(self, in_dim: int, hidden_dim: int, device: torch.device = None):
super().__init__()
self.w = nn.Linear(in_dim, hidden_dim, bias=False, device=device)
nn.init.orthogonal_(self.w.weight, gain=1.0)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.w(x)
class HyperMLP(nn.Module):
"""
A small MLP with a specific architecture using HyperDense and Scaler.
"""
def __init__(
self,
in_dim: int,
hidden_dim: int,
out_dim: int,
scaler_init: float,
scaler_scale: float,
eps: float = 1e-8,
device: torch.device = None,
):
super().__init__()
self.w1 = HyperDense(in_dim, hidden_dim, device=device)
self.scaler = Scaler(hidden_dim, scaler_init, scaler_scale, device=device)
self.w2 = HyperDense(hidden_dim, out_dim, device=device)
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.w1(x)
x = self.scaler(x)
# `eps` is required to prevent zero vector.
x = F.relu(x) + self.eps
x = self.w2(x)
x = l2normalize(x, axis=-1)
return x
class HyperEmbedder(nn.Module):
"""
Embeds input by concatenating a constant, normalizing, and applying layers.
"""
def __init__(
self,
in_dim: int,
hidden_dim: int,
scaler_init: float,
scaler_scale: float,
c_shift: float,
device: torch.device = None,
):
super().__init__()
# The input dimension to the dense layer is in_dim + 1
self.w = HyperDense(in_dim + 1, hidden_dim, device=device)
self.scaler = Scaler(hidden_dim, scaler_init, scaler_scale, device=device)
self.c_shift = c_shift
def forward(self, x: torch.Tensor) -> torch.Tensor:
new_axis = torch.full((*x.shape[:-1], 1), self.c_shift, device=x.device)
x = torch.cat([x, new_axis], dim=-1)
x = l2normalize(x, axis=-1)
x = self.w(x)
x = self.scaler(x)
x = l2normalize(x, axis=-1)
return x
class HyperLERPBlock(nn.Module):
"""
A residual block using Linear Interpolation (LERP).
"""
def __init__(
self,
hidden_dim: int,
scaler_init: float,
scaler_scale: float,
alpha_init: float,
alpha_scale: float,
expansion: int = 4,
device: torch.device = None,
):
super().__init__()
self.mlp = HyperMLP(
in_dim=hidden_dim,
hidden_dim=hidden_dim * expansion,
out_dim=hidden_dim,
scaler_init=scaler_init / math.sqrt(expansion),
scaler_scale=scaler_scale / math.sqrt(expansion),
device=device,
)
self.alpha_scaler = Scaler(
dim=hidden_dim,
init=alpha_init,
scale=alpha_scale,
device=device,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
mlp_out = self.mlp(x)
# The original paper uses (x - residual) but x is the residual here.
# This is interpreted as alpha * (mlp_output - residual_input)
x = residual + self.alpha_scaler(mlp_out - residual)
x = l2normalize(x, axis=-1)
return x
class HyperTanhPolicy(nn.Module):
"""
A policy that outputs a Tanh action.
"""
def __init__(
self,
hidden_dim: int,
action_dim: int,
scaler_init: float,
scaler_scale: float,
device: torch.device = None,
):
super().__init__()
self.mean_w1 = HyperDense(hidden_dim, hidden_dim, device=device)
self.mean_scaler = Scaler(hidden_dim, scaler_init, scaler_scale, device=device)
self.mean_w2 = HyperDense(hidden_dim, action_dim, device=device)
self.mean_bias = nn.Parameter(torch.zeros(action_dim, device=device))
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Mean path
mean = self.mean_w1(x)
mean = self.mean_scaler(mean)
mean = self.mean_w2(mean) + self.mean_bias
mean = torch.tanh(mean)
return mean
class HyperCategoricalValue(nn.Module):
"""
A value function that predicts a categorical distribution over a range of values.
"""
def __init__(
self,
hidden_dim: int,
num_bins: int,
scaler_init: float,
scaler_scale: float,
device: torch.device = None,
):
super().__init__()
self.w1 = HyperDense(hidden_dim, hidden_dim, device=device)
self.scaler = Scaler(hidden_dim, scaler_init, scaler_scale, device=device)
self.w2 = HyperDense(hidden_dim, num_bins, device=device)
self.bias = nn.Parameter(torch.zeros(num_bins, device=device))
def forward(self, x: torch.Tensor) -> torch.Tensor:
logits = self.w1(x)
logits = self.scaler(logits)
logits = self.w2(logits) + self.bias
return logits
class DistributionalQNetwork(nn.Module):
def __init__(
self,
n_obs: int,
n_act: int,
num_atoms: int,
v_min: float,
v_max: float,
hidden_dim: int,
scaler_init: float,
scaler_scale: float,
alpha_init: float,
alpha_scale: float,
num_blocks: int,
c_shift: float,
expansion: int,
device: torch.device = None,
):
super().__init__()
self.embedder = HyperEmbedder(
in_dim=n_obs + n_act,
hidden_dim=hidden_dim,
scaler_init=scaler_init,
scaler_scale=scaler_scale,
c_shift=c_shift,
device=device,
)
self.encoder = nn.Sequential(
*[
HyperLERPBlock(
hidden_dim=hidden_dim,
scaler_init=scaler_init,
scaler_scale=scaler_scale,
alpha_init=alpha_init,
alpha_scale=alpha_scale,
expansion=expansion,
device=device,
)
for _ in range(num_blocks)
]
)
self.predictor = HyperCategoricalValue(
hidden_dim=hidden_dim,
num_bins=num_atoms,
scaler_init=1.0,
scaler_scale=1.0,
device=device,
)
self.v_min = v_min
self.v_max = v_max
self.num_atoms = num_atoms
def forward(self, obs: torch.Tensor, actions: torch.Tensor) -> torch.Tensor:
x = torch.cat([obs, actions], 1)
x = self.embedder(x)
x = self.encoder(x)
x = self.predictor(x)
return x
def projection(
self,
obs: torch.Tensor,
actions: torch.Tensor,
rewards: torch.Tensor,
bootstrap: torch.Tensor,
discount: float,
q_support: torch.Tensor,
device: torch.device,
) -> torch.Tensor:
delta_z = (self.v_max - self.v_min) / (self.num_atoms - 1)
batch_size = rewards.shape[0]
target_z = (
rewards.unsqueeze(1)
+ bootstrap.unsqueeze(1) * discount.unsqueeze(1) * q_support
)
target_z = target_z.clamp(self.v_min, self.v_max)
b = (target_z - self.v_min) / delta_z
l = torch.floor(b).long()
u = torch.ceil(b).long()
l_mask = torch.logical_and((u > 0), (l == u))
u_mask = torch.logical_and((l < (self.num_atoms - 1)), (l == u))
l = torch.where(l_mask, l - 1, l)
u = torch.where(u_mask, u + 1, u)
next_dist = F.softmax(self.forward(obs, actions), dim=1)
proj_dist = torch.zeros_like(next_dist)
offset = (
torch.linspace(
0, (batch_size - 1) * self.num_atoms, batch_size, device=device
)
.unsqueeze(1)
.expand(batch_size, self.num_atoms)
.long()
)
proj_dist.view(-1).index_add_(
0, (l + offset).view(-1), (next_dist * (u.float() - b)).view(-1)
)
proj_dist.view(-1).index_add_(
0, (u + offset).view(-1), (next_dist * (b - l.float())).view(-1)
)
return proj_dist
class Critic(nn.Module):
def __init__(
self,
n_obs: int,
n_act: int,
num_atoms: int,
v_min: float,
v_max: float,
hidden_dim: int,
scaler_init: float,
scaler_scale: float,
alpha_init: float,
alpha_scale: float,
num_blocks: int,
c_shift: float,
expansion: int,
device: torch.device = None,
):
super().__init__()
self.qnet1 = DistributionalQNetwork(
n_obs=n_obs,
n_act=n_act,
num_atoms=num_atoms,
v_min=v_min,
v_max=v_max,
scaler_init=scaler_init,
scaler_scale=scaler_scale,
alpha_init=alpha_init,
alpha_scale=alpha_scale,
num_blocks=num_blocks,
c_shift=c_shift,
expansion=expansion,
hidden_dim=hidden_dim,
device=device,
)
self.qnet2 = DistributionalQNetwork(
n_obs=n_obs,
n_act=n_act,
num_atoms=num_atoms,
v_min=v_min,
v_max=v_max,
scaler_init=scaler_init,
scaler_scale=scaler_scale,
alpha_init=alpha_init,
alpha_scale=alpha_scale,
num_blocks=num_blocks,
c_shift=c_shift,
expansion=expansion,
hidden_dim=hidden_dim,
device=device,
)
self.register_buffer(
"q_support", torch.linspace(v_min, v_max, num_atoms, device=device)
)
def forward(self, obs: torch.Tensor, actions: torch.Tensor) -> torch.Tensor:
return self.qnet1(obs, actions), self.qnet2(obs, actions)
def projection(
self,
obs: torch.Tensor,
actions: torch.Tensor,
rewards: torch.Tensor,
bootstrap: torch.Tensor,
discount: float,
) -> torch.Tensor:
"""Projection operation that includes q_support directly"""
q1_proj = self.qnet1.projection(
obs,
actions,
rewards,
bootstrap,
discount,
self.q_support,
self.q_support.device,
)
q2_proj = self.qnet2.projection(
obs,
actions,
rewards,
bootstrap,
discount,
self.q_support,
self.q_support.device,
)
return q1_proj, q2_proj
def get_value(self, probs: torch.Tensor) -> torch.Tensor:
"""Calculate value from logits using support"""
return torch.sum(probs * self.q_support, dim=1)
class Actor(nn.Module):
def __init__(
self,
n_obs: int,
n_act: int,
num_envs: int,
hidden_dim: int,
scaler_init: float,
scaler_scale: float,
alpha_init: float,
alpha_scale: float,
expansion: int,
c_shift: float,
num_blocks: int,
std_min: float = 0.05,
std_max: float = 0.8,
device: torch.device = None,
):
super().__init__()
self.n_act = n_act
self.embedder = HyperEmbedder(
in_dim=n_obs,
hidden_dim=hidden_dim,
scaler_init=scaler_init,
scaler_scale=scaler_scale,
c_shift=c_shift,
device=device,
)
self.encoder = nn.Sequential(
*[
HyperLERPBlock(
hidden_dim=hidden_dim,
scaler_init=scaler_init,
scaler_scale=scaler_scale,
alpha_init=alpha_init,
alpha_scale=alpha_scale,
expansion=expansion,
device=device,
)
for _ in range(num_blocks)
]
)
self.predictor = HyperTanhPolicy(
hidden_dim=hidden_dim,
action_dim=n_act,
scaler_init=scaler_init,
scaler_scale=scaler_scale,
device=device,
)
noise_scales = (
torch.rand(num_envs, 1, device=device) * (std_max - std_min) + std_min
)
self.register_buffer("noise_scales", noise_scales)
self.register_buffer("std_min", torch.as_tensor(std_min, device=device))
self.register_buffer("std_max", torch.as_tensor(std_max, device=device))
self.n_envs = num_envs
def forward(self, obs: torch.Tensor) -> torch.Tensor:
x = obs
x = self.embedder(x)
x = self.encoder(x)
x = self.predictor(x)
return x
def explore(
self, obs: torch.Tensor, dones: torch.Tensor = None, deterministic: bool = False
) -> torch.Tensor:
# If dones is provided, resample noise for environments that are done
if dones is not None and dones.sum() > 0:
# Generate new noise scales for done environments (one per environment)
new_scales = (
torch.rand(self.n_envs, 1, device=obs.device)
* (self.std_max - self.std_min)
+ self.std_min
)
# Update only the noise scales for environments that are done
dones_view = dones.view(-1, 1) > 0
self.noise_scales = torch.where(dones_view, new_scales, self.noise_scales)
act = self(obs)
if deterministic:
return act
noise = torch.randn_like(act) * self.noise_scales
return act + noise

View File

@ -1,5 +1,7 @@
import os
from typing import Optional
import torch
import torch.nn as nn
@ -472,6 +474,44 @@ class EmpiricalNormalization(nn.Module):
return y * (self._std + self.eps) + self._mean
class RewardNormalizer(nn.Module):
def __init__(
self,
gamma: float,
device: torch.device,
g_max: float = 10.0,
epsilon: float = 1e-8,
):
super().__init__()
self.register_buffer(
"G", torch.zeros(1, device=device)
) # running estimate of the discounted return
self.register_buffer("G_r_max", torch.zeros(1, device=device)) # running-max
self.G_rms = EmpiricalNormalization(shape=1, device=device)
self.gamma = gamma
self.g_max = g_max
self.epsilon = epsilon
def _scale_reward(self, rewards: torch.Tensor) -> torch.Tensor:
var_denominator = self.G_rms.std[0] + self.epsilon
min_required_denominator = self.G_r_max / self.g_max
denominator = torch.maximum(var_denominator, min_required_denominator)
return rewards / denominator
def update_stats(
self,
rewards: torch.Tensor,
dones: torch.Tensor,
):
self.G = self.gamma * (1 - dones) * self.G + rewards
self.G_rms.update(self.G.view(-1, 1))
self.G_r_max = max(self.G_r_max, max(abs(self.G)))
def forward(self, rewards: torch.Tensor) -> torch.Tensor:
return self._scale_reward(rewards)
def cpu_state(sd):
# detach & move to host without locking the compute stream
return {k: v.detach().to("cpu", non_blocking=True) for k, v in sd.items()}

View File

@ -10,6 +10,8 @@ class BaseArgs:
# See IsaacLabArgs for default hyperparameters for IsaacLab
env_name: str = "h1hand-stand-v0"
"""the id of the environment"""
agent: str = "fasttd3"
"""the agent to use: currently support [fasttd3, fasttd3_simbav2]"""
seed: int = 1
"""seed of the experiment"""
torch_deterministic: bool = True
@ -36,6 +38,10 @@ class BaseArgs:
"""the learning rate of the critic"""
actor_learning_rate: float = 3e-4
"""the learning rate for the actor"""
critic_learning_rate_end: float = 3e-4
"""the learning rate of the critic at the end of training"""
actor_learning_rate_end: float = 3e-4
"""the learning rate for the actor at the end of training"""
buffer_size: int = 1024 * 50
"""the replay memory buffer size"""
num_steps: int = 1
@ -72,6 +78,10 @@ class BaseArgs:
"""the hidden dimension of the critic network"""
actor_hidden_dim: int = 512
"""the hidden dimension of the actor network"""
critic_num_blocks: int = 2
"""(SimbaV2 only) the number of blocks in the critic network"""
actor_num_blocks: int = 1
"""(SimbaV2 only) the number of blocks in the actor network"""
use_cdq: bool = True
"""whether to use Clipped Double Q-learning"""
measure_burnin: int = 3
@ -84,6 +94,8 @@ class BaseArgs:
"""whether to use torch.compile."""
obs_normalization: bool = True
"""whether to enable observation normalization"""
reward_normalization: bool = False
"""whether to enable reward normalization (Not recommended for now, it's unstable.)"""
max_grad_norm: float = 0.0
"""the maximum gradient norm"""
amp: bool = True
@ -350,6 +362,7 @@ class Go1GetupArgs(MuJoCoPlaygroundArgs):
class LeapCubeReorientArgs(MuJoCoPlaygroundArgs):
env_name: str = "LeapCubeReorient"
num_steps: int = 3
gamma: float = 0.99
policy_noise: float = 0.2
v_min: float = -50.0
v_max: float = 50.0
@ -361,6 +374,7 @@ class LeapCubeRotateZAxisArgs(MuJoCoPlaygroundArgs):
env_name: str = "LeapCubeRotateZAxis"
num_steps: int = 1
policy_noise: float = 0.2
gamma: float = 0.99
v_min: float = -10.0
v_max: float = 10.0
use_cdq: bool = False

View File

@ -12,6 +12,7 @@ os.environ["JAX_DEFAULT_MATMUL_PRECISION"] = "highest"
import random
import time
import math
import tqdm
import wandb
@ -25,9 +26,13 @@ from torch.amp import autocast, GradScaler
from tensordict import TensorDict, from_module
from fast_td3_utils import EmpiricalNormalization, SimpleReplayBuffer, save_params
from fast_td3_utils import (
EmpiricalNormalization,
RewardNormalizer,
SimpleReplayBuffer,
save_params,
)
from hyperparams import get_args
from fast_td3 import Actor, Critic
torch.set_float32_matmul_precision("high")
@ -135,44 +140,74 @@ def main():
obs_normalizer = nn.Identity()
critic_obs_normalizer = nn.Identity()
actor = Actor(
n_obs=n_obs,
n_act=n_act,
num_envs=args.num_envs,
device=device,
init_scale=args.init_scale,
hidden_dim=args.actor_hidden_dim,
)
actor_detach = Actor(
n_obs=n_obs,
n_act=n_act,
num_envs=args.num_envs,
device=device,
init_scale=args.init_scale,
hidden_dim=args.actor_hidden_dim,
)
if args.reward_normalization:
reward_normalizer = RewardNormalizer(
gamma=args.gamma, device=device, g_max=min(abs(args.v_min), abs(args.v_max))
)
else:
reward_normalizer = nn.Identity()
actor_kwargs = {
"n_obs": n_obs,
"n_act": n_act,
"num_envs": args.num_envs,
"device": device,
"init_scale": args.init_scale,
"hidden_dim": args.actor_hidden_dim,
}
critic_kwargs = {
"n_obs": n_critic_obs,
"n_act": n_act,
"num_atoms": args.num_atoms,
"v_min": args.v_min,
"v_max": args.v_max,
"hidden_dim": args.critic_hidden_dim,
"device": device,
}
if args.agent == "fasttd3":
from fast_td3 import Actor, Critic
print("Using FastTD3")
elif args.agent == "fasttd3_simbav2":
from fast_td3_simbav2 import Actor, Critic
print("Using FastTD3 + SimbaV2")
actor_kwargs.pop("init_scale")
actor_kwargs.update(
{
"scaler_init": math.sqrt(2.0 / args.actor_hidden_dim),
"scaler_scale": math.sqrt(2.0 / args.actor_hidden_dim),
"alpha_init": 1.0 / (args.actor_num_blocks + 1),
"alpha_scale": 1.0 / math.sqrt(args.actor_hidden_dim),
"expansion": 4,
"c_shift": 3.0,
"num_blocks": args.actor_num_blocks,
}
)
critic_kwargs.update(
{
"scaler_init": math.sqrt(2.0 / args.critic_hidden_dim),
"scaler_scale": math.sqrt(2.0 / args.critic_hidden_dim),
"alpha_init": 1.0 / (args.critic_num_blocks + 1),
"alpha_scale": 1.0 / math.sqrt(args.critic_hidden_dim),
"num_blocks": args.critic_num_blocks,
"expansion": 4,
"c_shift": 3.0,
}
)
else:
raise ValueError(f"Agent {args.agent} not supported")
actor = Actor(**actor_kwargs)
actor_detach = Actor(**actor_kwargs)
# Copy params to actor_detach without grad
from_module(actor).data.to_module(actor_detach)
policy = actor_detach.explore
qnet = Critic(
n_obs=n_critic_obs,
n_act=n_act,
num_atoms=args.num_atoms,
v_min=args.v_min,
v_max=args.v_max,
hidden_dim=args.critic_hidden_dim,
device=device,
)
qnet_target = Critic(
n_obs=n_critic_obs,
n_act=n_act,
num_atoms=args.num_atoms,
v_min=args.v_min,
v_max=args.v_max,
hidden_dim=args.critic_hidden_dim,
device=device,
)
qnet = Critic(**critic_kwargs)
qnet_target = Critic(**critic_kwargs)
qnet_target.load_state_dict(qnet.state_dict())
q_optimizer = optim.AdamW(
@ -186,6 +221,18 @@ def main():
weight_decay=args.weight_decay,
)
# Add learning rate schedulers
q_scheduler = optim.lr_scheduler.CosineAnnealingLR(
q_optimizer,
T_max=args.total_timesteps,
eta_min=args.critic_learning_rate_end, # Decay to 10% of initial lr
)
actor_scheduler = optim.lr_scheduler.CosineAnnealingLR(
actor_optimizer,
T_max=args.total_timesteps,
eta_min=args.actor_learning_rate_end, # Decay to 10% of initial lr
)
rb = SimpleReplayBuffer(
n_env=args.num_envs,
buffer_size=args.buffer_size,
@ -353,7 +400,6 @@ def main():
scaler.step(q_optimizer)
scaler.update()
logs_dict["buffer_rewards"] = rewards.mean()
logs_dict["critic_grad_norm"] = critic_grad_norm.detach()
logs_dict["qf_loss"] = qf_loss.detach()
logs_dict["qf_max"] = qf1_next_target_value.max().detach()
@ -399,9 +445,15 @@ def main():
policy = torch.compile(policy, mode=mode)
normalize_obs = torch.compile(obs_normalizer.forward, mode=mode)
normalize_critic_obs = torch.compile(critic_obs_normalizer.forward, mode=mode)
if args.reward_normalization:
update_stats = torch.compile(reward_normalizer.update_stats, mode=mode)
normalize_reward = torch.compile(reward_normalizer.forward, mode=mode)
else:
normalize_obs = obs_normalizer.forward
normalize_critic_obs = critic_obs_normalizer.forward
if args.reward_normalization:
update_stats = reward_normalizer.update_stats
normalize_reward = reward_normalizer.forward
if envs.asymmetric_obs:
obs, critic_obs = envs.reset_with_critic_obs()
@ -447,6 +499,9 @@ def main():
next_obs, rewards, dones, infos = envs.step(actions.float())
truncations = infos["time_outs"]
if args.reward_normalization:
update_stats(rewards, dones.float())
if envs.asymmetric_obs:
next_critic_obs = infos["observations"]["critic"]
@ -494,6 +549,8 @@ def main():
data["next"]["observations"] = normalize_obs(
data["next"]["observations"]
)
raw_rewards = data["next"]["rewards"]
data["next"]["rewards"] = normalize_reward(raw_rewards)
if envs.asymmetric_obs:
data["critic_observations"] = normalize_critic_obs(
data["critic_observations"]
@ -527,8 +584,8 @@ def main():
"qf_min": logs_dict["qf_min"].mean(),
"actor_grad_norm": logs_dict["actor_grad_norm"].mean(),
"critic_grad_norm": logs_dict["critic_grad_norm"].mean(),
"buffer_rewards": logs_dict["buffer_rewards"].mean(),
"env_rewards": rewards.mean(),
"buffer_rewards": raw_rewards.mean(),
}
if args.eval_interval > 0 and global_step % args.eval_interval == 0:
@ -563,6 +620,8 @@ def main():
{
"speed": speed,
"frame": global_step * args.num_envs,
"critic_lr": q_scheduler.get_last_lr()[0],
"actor_lr": actor_scheduler.get_last_lr()[0],
**logs,
},
step=global_step,
@ -585,6 +644,10 @@ def main():
f"models/{run_name}_{global_step}.pt",
)
# Update learning rates
q_scheduler.step()
actor_scheduler.step()
global_step += 1
pbar.update(1)