#!/bin/bash #SBATCH --job-name=fasttd3_test #SBATCH --account=hk-project-p0022232 #SBATCH --partition=accelerated #SBATCH --time=02:00:00 #SBATCH --gres=gpu:1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=8 #SBATCH --mem=32G #SBATCH --output=fasttd3_%j.out #SBATCH --error=fasttd3_%j.err # Load necessary modules module purge module load devel/cuda/12.4 module load compiler/intel/2025.1_llvm # Navigate to the project directory cd $SLURM_SUBMIT_DIR # Activate the virtual environment source .venv/bin/activate # Set environment variables for proper GPU usage export CUDA_VISIBLE_DEVICES=$SLURM_LOCALID export JAX_PLATFORMS="cuda" # Ensure wandb is logged in (set WANDB_API_KEY environment variable) # export WANDB_API_KEY=your_api_key_here # Use online mode by default - set WANDB_API_KEY before running export WANDB_MODE=online # Run FastTD3 training with MuJoCo Playground environment python fast_td3/train.py \ --env_name T1JoystickFlatTerrain \ --exp_name FastTD3_HoReKa_Test \ --seed 42 \ --total_timesteps 25000 \ --num_envs 1024 \ --batch_size 4096 \ --eval_interval 5000 \ --render_interval 0 \ --project FastTD3_HoReKa \ echo "Job completed at $(date)"