#!/bin/bash #SBATCH --job-name=fasttd3_dev_test #SBATCH --account=hk-project-p0022232 #SBATCH --partition=dev_accelerated #SBATCH --time=00:30:00 #SBATCH --gres=gpu:1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=4 #SBATCH --mem=16G #SBATCH --output=fasttd3_dev_%j.out #SBATCH --error=fasttd3_dev_%j.err # Load necessary modules module purge module load devel/cuda/12.4 module load compiler/intel/2025.1_llvm # Navigate to the project directory cd $SLURM_SUBMIT_DIR # Activate the virtual environment source .venv/bin/activate # Set environment variables for proper GPU usage export CUDA_VISIBLE_DEVICES=$SLURM_LOCALID export JAX_PLATFORMS="cuda" # Use online mode by default - set WANDB_API_KEY before running export WANDB_MODE=online echo "Starting FastTD3 dev test at $(date)" echo "GPU: $CUDA_VISIBLE_DEVICES" echo "Node: $(hostname)" # Run FastTD3 training with minimal settings for quick test python fast_td3/train.py \ --env_name T1JoystickFlatTerrain \ --exp_name FastTD3_Dev_Test \ --seed 42 \ --total_timesteps 5000 \ --num_envs 256 \ --batch_size 1024 \ --eval_interval 2500 \ --render_interval 0 \ --project FastTD3_HoReKa_Dev \ echo "Job completed at $(date)"