FastTD3/run_fasttd3.slurm
ys1087@partner.kit.edu 15750f56b2 Fix JAX compatibility and CUDA module issues for HoReKa
- Update SLURM scripts to use correct CUDA modules (devel/cuda/12.4, intel compiler)
- Add JAX downgrade to 0.4.35 for CuDNN 9.5.1 compatibility
- Fix JAX_PLATFORMS environment variable (cuda vs gpu,cpu)
- Update README with cluster-specific JAX installation steps
- Tested successfully: Both PyTorch and JAX working on GPU with full training
2025-07-22 16:36:06 +02:00

46 lines
1.2 KiB
Bash

#!/bin/bash
#SBATCH --job-name=fasttd3_test
#SBATCH --account=hk-project-p0022232
#SBATCH --partition=accelerated
#SBATCH --time=02:00:00
#SBATCH --gres=gpu:1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=8
#SBATCH --mem=32G
#SBATCH --output=fasttd3_%j.out
#SBATCH --error=fasttd3_%j.err
# Load necessary modules
module purge
module load devel/cuda/12.4
module load compiler/intel/2025.1_llvm
# Navigate to the project directory
cd $SLURM_SUBMIT_DIR
# Activate the virtual environment
source .venv/bin/activate
# Set environment variables for proper GPU usage
export CUDA_VISIBLE_DEVICES=$SLURM_LOCALID
export JAX_PLATFORMS="cuda"
export JAX_ENABLE_X64=True
# Ensure wandb is logged in (set WANDB_API_KEY environment variable)
# export WANDB_API_KEY=your_api_key_here
# For testing, use offline mode
export WANDB_MODE=offline
# Run FastTD3 training with MuJoCo Playground environment
python fast_td3/train.py \
--env_name T1JoystickFlatTerrain \
--exp_name FastTD3_HoReKa_Test \
--seed 42 \
--total_timesteps 25000 \
--num_envs 1024 \
--batch_size 4096 \
--eval_interval 5000 \
--render_interval 0 \
--project FastTD3_HoReKa
echo "Job completed at $(date)"