FastTD3/run_fasttd3.slurm
ys1087@partner.kit.edu e7e3ae48f1 Add FastTD3 HoReKa experiment management system
- Fixed JAX/PyTorch dtype mismatch for successful training
- Added experiment plan with paper-accurate hyperparameters
- Created batch submission and monitoring scripts
- Cleaned up log files and updated gitignore
- Ready for systematic paper replication
2025-07-22 17:08:03 +02:00

45 lines
1.2 KiB
Bash

#!/bin/bash
#SBATCH --job-name=fasttd3_test
#SBATCH --account=hk-project-p0022232
#SBATCH --partition=accelerated
#SBATCH --time=02:00:00
#SBATCH --gres=gpu:1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=8
#SBATCH --mem=32G
#SBATCH --output=fasttd3_%j.out
#SBATCH --error=fasttd3_%j.err
# Load necessary modules
module purge
module load devel/cuda/12.4
module load compiler/intel/2025.1_llvm
# Navigate to the project directory
cd $SLURM_SUBMIT_DIR
# Activate the virtual environment
source .venv/bin/activate
# Set environment variables for proper GPU usage
export CUDA_VISIBLE_DEVICES=$SLURM_LOCALID
export JAX_PLATFORMS="cuda"
# Ensure wandb is logged in (set WANDB_API_KEY environment variable)
# export WANDB_API_KEY=your_api_key_here
# Use online mode by default - set WANDB_API_KEY before running
export WANDB_MODE=online
# Run FastTD3 training with MuJoCo Playground environment
python fast_td3/train.py \
--env_name T1JoystickFlatTerrain \
--exp_name FastTD3_HoReKa_Test \
--seed 42 \
--total_timesteps 25000 \
--num_envs 1024 \
--batch_size 4096 \
--eval_interval 5000 \
--render_interval 0 \
--project FastTD3_HoReKa \
echo "Job completed at $(date)"