Compare commits
2 Commits
d941b2c9af
...
dc8bafbbfe
Author | SHA1 | Date | |
---|---|---|---|
dc8bafbbfe | |||
dc59173fe7 |
@ -102,15 +102,17 @@ The `NuconEnv` class in `nucon/rl.py` provides a Gym-compatible environment for
|
||||
- Observation space: Includes all readable parameters from the Nucon system.
|
||||
- Action space: Encompasses all writable parameters in the Nucon system.
|
||||
- Step function: Applies actions to the Nucon system and returns new observations.
|
||||
- Objective function: Allows for custom objective functions to be defined for training.
|
||||
- Objective function: Allows for predefined or custom objective functions to be defined for training.
|
||||
|
||||
### Usage
|
||||
|
||||
Here's a basic example of how to use the RL environment:
|
||||
```python
|
||||
from nucon.rl import NuconEnv
|
||||
from nucon.rl import NuconEnv, Parameterized_Objectives
|
||||
|
||||
env = NuconEnv(objectives=['max_power'], seconds_per_step=5)
|
||||
# env2 = gym.make('Nucon-max_power-v0')
|
||||
# env3 = NuconEnv(objectives=[Parameterized_Objectives['target_temperature'](goal_temp=600)], seconds_per_step=5)
|
||||
|
||||
obs, info = env.reset()
|
||||
for _ in range(1000):
|
||||
@ -122,6 +124,8 @@ for _ in range(1000):
|
||||
env.close()
|
||||
```
|
||||
|
||||
Objectives takes either strings of the name of predefined objectives, or lambda functions which take an observation and return a scalar reward. Final rewards are summed across all objectives. `info['objectives']` contains all objectives and their values.
|
||||
|
||||
## Testing
|
||||
|
||||
NuCon includes a test suite to verify its functionality and compatibility with the Nucleares game.
|
||||
|
21
nucon/rl.py
21
nucon/rl.py
@ -10,10 +10,13 @@ Objectives = {
|
||||
"coeff": lambda obj, coeff: lambda obs: obj(obs) * coeff,
|
||||
|
||||
"max_power": lambda obs: obs["GENERATOR_0_KW"] + obs["GENERATOR_1_KW"] + obs["GENERATOR_2_KW"],
|
||||
"target_temperature": lambda goal_temp: lambda obs: (obs["CORE_TEMP"] - goal_temp) ** 2,
|
||||
"episode_time": lambda obs: obs["EPISODE_TIME"],
|
||||
}
|
||||
|
||||
Parameterized_Objectives = {
|
||||
"target_temperature": lambda goal_temp: lambda obs: -((obs["CORE_TEMP"] - goal_temp) ** 2),
|
||||
}
|
||||
|
||||
class NuconEnv(gym.Env):
|
||||
metadata = {'render_modes': ['human']}
|
||||
|
||||
@ -140,4 +143,18 @@ class NuconEnv(gym.Env):
|
||||
return np.concatenate([v.flatten() for v in observation.values()])
|
||||
|
||||
def _unflatten_observation(self, flat_observation):
|
||||
return {k: v.reshape(1, -1) for k, v in self.observation_space.items()}
|
||||
return {k: v.reshape(1, -1) for k, v in self.observation_space.items()}
|
||||
|
||||
def register_nucon_envs():
|
||||
gym.register(
|
||||
id='Nucon-max_power-v0',
|
||||
entry_point='nucon.rl:NuconEnv',
|
||||
kwargs={'seconds_per_step': 5, 'objectives': ['max_power']}
|
||||
)
|
||||
gym.register(
|
||||
id='Nucon-target_temperature_600-v0',
|
||||
entry_point='nucon.rl:NuconEnv',
|
||||
kwargs={'seconds_per_step': 5, 'objectives': [Parameterized_Objectives['target_temperature'](goal_temp=600)]}
|
||||
)
|
||||
|
||||
register_nucon_envs()
|
Loading…
Reference in New Issue
Block a user