160 lines
6.5 KiB
Python
160 lines
6.5 KiB
Python
import gymnasium as gym
|
|
from gymnasium import spaces
|
|
import numpy as np
|
|
import time
|
|
from typing import Dict, Any
|
|
from .core import Nucon, BreakerStatus, PumpStatus, PumpDryStatus, PumpOverloadStatus
|
|
|
|
Objectives = {
|
|
"null": lambda obs: 0,
|
|
"coeff": lambda obj, coeff: lambda obs: obj(obs) * coeff,
|
|
|
|
"max_power": lambda obs: obs["GENERATOR_0_KW"] + obs["GENERATOR_1_KW"] + obs["GENERATOR_2_KW"],
|
|
"episode_time": lambda obs: obs["EPISODE_TIME"],
|
|
}
|
|
|
|
Parameterized_Objectives = {
|
|
"target_temperature": lambda goal_temp: lambda obs: -((obs["CORE_TEMP"] - goal_temp) ** 2),
|
|
}
|
|
|
|
class NuconEnv(gym.Env):
|
|
metadata = {'render_modes': ['human']}
|
|
|
|
def __init__(self, render_mode=None, seconds_per_step=5, objectives=['null'], terminators=['null'], terminate_above=0):
|
|
super().__init__()
|
|
|
|
self.render_mode = render_mode
|
|
self.seconds_per_step = seconds_per_step
|
|
self.terminate_at = terminate_at
|
|
|
|
# Define observation space
|
|
obs_spaces = {'EPISODE_TIME': spaces.Box(low=0, high=np.inf, shape=(1,), dtype=np.float32)}
|
|
for param in Nucon.get_all_readable():
|
|
if param.param_type == float:
|
|
obs_spaces[param.id] = spaces.Box(low=param.min_val or -np.inf, high=param.max_val or np.inf, shape=(1,), dtype=np.float32)
|
|
elif param.param_type == int:
|
|
if param.min_val is not None and param.max_val is not None:
|
|
obs_spaces[param.id] = spaces.Box(low=param.min_val, high=param.max_val, shape=(1,), dtype=np.float32)
|
|
else:
|
|
obs_spaces[param.id] = spaces.Box(low=-np.inf, high=np.inf, shape=(1,), dtype=np.float32)
|
|
elif param.param_type == bool:
|
|
obs_spaces[param.id] = spaces.Box(low=0, high=1, shape=(1,), dtype=np.float32)
|
|
elif issubclass(param.param_type, Enum):
|
|
obs_spaces[param.id] = spaces.Box(low=0, high=1, shape=(len(param.param_type),), dtype=np.float32)
|
|
else:
|
|
raise ValueError(f"Unsupported observation parameter type: {param.param_type}")
|
|
|
|
self.observation_space = spaces.Dict(obs_spaces)
|
|
|
|
# Define action space
|
|
action_spaces = {}
|
|
for param in Nucon.get_all_writable():
|
|
if param.param_type == float:
|
|
action_spaces[param.id] = spaces.Box(low=param.min_val or -np.inf, high=param.max_val or np.inf, shape=(1,), dtype=np.float32)
|
|
elif param.param_type == int:
|
|
if param.min_val is not None and param.max_val is not None:
|
|
action_spaces[param.id] = spaces.Box(low=param.min_val, high=param.max_val, shape=(1,), dtype=np.float32)
|
|
else:
|
|
action_spaces[param.id] = spaces.Box(low=-np.inf, high=np.inf, shape=(1,), dtype=np.float32)
|
|
elif param.param_type == bool:
|
|
action_spaces[param.id] = spaces.Box(low=0, high=1, shape=(1,), dtype=np.float32)
|
|
elif issubclass(param.param_type, Enum):
|
|
action_spaces[param.id] = spaces.Box(low=0, high=1, shape=(len(param.param_type),), dtype=np.float32)
|
|
else:
|
|
raise ValueError(f"Unsupported action parameter type: {param.param_type}")
|
|
|
|
self.action_space = spaces.Dict(action_spaces)
|
|
|
|
for objective in objectives:
|
|
if objective in Objectives:
|
|
self.objectives.append(Objectives[objective])
|
|
elif callable(objective):
|
|
self.objectives.append(objective)
|
|
else:
|
|
raise ValueError(f"Unsupported objective: {objective}")
|
|
|
|
for terminator in terminators:
|
|
if terminator in Objectives:
|
|
self.terminators.append(Objectives[terminator])
|
|
elif callable(terminator):
|
|
self.terminators.append(terminator)
|
|
else:
|
|
raise ValueError(f"Unsupported terminator: {terminator}")
|
|
|
|
def _get_obs(self):
|
|
obs = {}
|
|
for param in Nucon.get_all_readable():
|
|
value = Nucon.get(param)
|
|
if isinstance(value, Enum):
|
|
value = value.value
|
|
obs[param.id] = value
|
|
obs["EPISODE_TIME"] = self._total_steps * self.seconds_per_step
|
|
return obs
|
|
|
|
def _get_info(self):
|
|
info = {'objectives': {}}
|
|
for objective in self.objectives:
|
|
info['objectives'][objective.__name__] = objective(self._get_obs())
|
|
return info
|
|
|
|
def reset(self, seed=None, options=None):
|
|
super().reset(seed=seed)
|
|
|
|
self._total_steps = 0
|
|
observation = self._get_obs()
|
|
info = self._get_info()
|
|
|
|
return observation, info
|
|
|
|
def step(self, action):
|
|
# Apply the action to the Nucon system
|
|
for param_id, value in action.items():
|
|
param = next(p for p in Nucon if p.id == param_id)
|
|
if issubclass(param.param_type, Enum):
|
|
value = param.param_type(value)
|
|
if param.min_val is not None and param.max_val is not None:
|
|
value = np.clip(value, param.min_val, param.max_val)
|
|
Nucon.set(param, value)
|
|
|
|
observation = self._get_obs()
|
|
terminated = np.sum([terminator(observation) for terminator in self.terminators]) > self.terminate_above
|
|
truncated = False
|
|
info = self._get_info()
|
|
reward = sum(obj for obj in info['objectives'].values())
|
|
|
|
self._total_steps += 1
|
|
time.sleep(self.seconds_per_step)
|
|
return observation, reward, terminated, truncated, info
|
|
|
|
def render(self):
|
|
if self.render_mode == "human":
|
|
pass
|
|
|
|
def close(self):
|
|
pass
|
|
|
|
def _flatten_action(self, action):
|
|
return np.concatenate([v.flatten() for v in action.values()])
|
|
|
|
def _unflatten_action(self, flat_action):
|
|
return {k: v.reshape(1, -1) for k, v in self.action_space.items()}
|
|
|
|
def _flatten_observation(self, observation):
|
|
return np.concatenate([v.flatten() for v in observation.values()])
|
|
|
|
def _unflatten_observation(self, flat_observation):
|
|
return {k: v.reshape(1, -1) for k, v in self.observation_space.items()}
|
|
|
|
def register_nucon_envs():
|
|
gym.register(
|
|
id='Nucon-max_power-v0',
|
|
entry_point='nucon.rl:NuconEnv',
|
|
kwargs={'seconds_per_step': 5, 'objectives': ['max_power']}
|
|
)
|
|
gym.register(
|
|
id='Nucon-target_temperature_600-v0',
|
|
entry_point='nucon.rl:NuconEnv',
|
|
kwargs={'seconds_per_step': 5, 'objectives': [Parameterized_Objectives['target_temperature'](goal_temp=600)]}
|
|
)
|
|
|
|
register_nucon_envs() |