Port FullCov into PCA

This commit is contained in:
Dominik Moritz Roth 2024-03-30 14:36:46 +01:00
parent 4485e558a8
commit 220328f4b9
3 changed files with 211 additions and 19 deletions

View File

@ -46,6 +46,9 @@ class White_Noise():
shape = self.known_shape shape = self.known_shape
return th.Tensor(np.random.normal(0, 1, shape)) return th.Tensor(np.random.normal(0, 1, shape))
def reset(self):
pass
def get_colored_noise(beta, known_shape=None): def get_colored_noise(beta, known_shape=None):
if beta == 0: if beta == 0:

View File

@ -5,19 +5,20 @@ import scipy.spatial
from torch import nn from torch import nn
from stable_baselines3.common.distributions import Distribution as SB3_Distribution from stable_baselines3.common.distributions import Distribution as SB3_Distribution
from stable_baselines3.common.distributions import sum_independent_dims from stable_baselines3.common.distributions import sum_independent_dims
from torch.distributions import Normal from torch.distributions import Normal, MultivariateNormal
import torch.nn.functional as F import torch.nn.functional as F
from priorConditionedAnnealing import noise, kernel from priorConditionedAnnealing import noise, kernel
from priorConditionedAnnealing.tensor_ops import fill_triangular, fill_triangular_inverse
class Par_Strength(Enum): class Par_Strength(Enum):
SCALAR = 'SCALAR' SCALAR = 'SCALAR'
DIAG = 'DIAG' DIAG = 'DIAG'
FULL = 'FULL'
CONT_SCALAR = 'CONT_SCALAR' CONT_SCALAR = 'CONT_SCALAR'
CONT_DIAG = 'CONT_DIAG' CONT_DIAG = 'CONT_DIAG'
CONT_HYBRID = 'CONT_HYBRID' CONT_HYBRID = 'CONT_HYBRID'
CONT_FULL = 'CONT_FULL'
class EnforcePositiveType(Enum): class EnforcePositiveType(Enum):
# This need to be implemented in this ugly fashion, # This need to be implemented in this ugly fashion,
@ -31,7 +32,7 @@ class EnforcePositiveType(Enum):
def apply(self, x): def apply(self, x):
# aaaaaa # aaaaaa
return [nn.Identity(), nn.Softplus(beta=1, threshold=20), th.abs, nn.ReLU(inplace=False), th.log][self.value](x) return [nn.Identity(), nn.Softplus(beta=10, threshold=2), th.abs, nn.ReLU(inplace=False), th.log][self.value](x)
class Avaible_Kernel_Funcs(Enum): class Avaible_Kernel_Funcs(Enum):
@ -98,6 +99,7 @@ class PCA_Distribution(SB3_Distribution):
epsilon: float = 1e-6, epsilon: float = 1e-6,
skip_conditioning: bool = False, skip_conditioning: bool = False,
temporal_gradient_emission: bool = False, temporal_gradient_emission: bool = False,
msqrt_induces_full: bool = False,
Base_Noise=noise.White_Noise, Base_Noise=noise.White_Noise,
): ):
super().__init__() super().__init__()
@ -111,9 +113,12 @@ class PCA_Distribution(SB3_Distribution):
self.epsilon = epsilon self.epsilon = epsilon
self.skip_conditioning = skip_conditioning self.skip_conditioning = skip_conditioning
self.temporal_gradient_emission = temporal_gradient_emission self.temporal_gradient_emission = temporal_gradient_emission
self.msqrt_induces_full = msqrt_induces_full
self.base_noise = cast_to_Noise(Base_Noise, (n_envs, action_dim)) self.base_noise = cast_to_Noise(Base_Noise, (n_envs, action_dim))
assert not (not skip_conditioning and self.is_full()), 'Conditioning full Covariances not yet implemented'
# Premature optimization is the root of all evil # Premature optimization is the root of all evil
self._build_conditioner() self._build_conditioner()
# *Optimizes it anyways* # *Optimizes it anyways*
@ -126,8 +131,13 @@ class PCA_Distribution(SB3_Distribution):
def proba_distribution( def proba_distribution(
self, mean_actions: th.Tensor, std_actions: th.Tensor) -> SB3_Distribution: self, mean_actions: th.Tensor, std_actions: th.Tensor) -> SB3_Distribution:
self.distribution = Normal( if self.is_full():
mean_actions, std_actions) self.distribution = MultivariateNormal(mean_actions, scale_tril=std_actions, validate_args=not self.msqrt_induces_full)
#self.distribution.scale = th.diagonal(std_actions, dim1=-2, dim2=-1)
self.distribution._mark_mSqrt = self.msqrt_induces_full
else:
self.distribution = Normal(
mean_actions, std_actions)
return self return self
def log_prob(self, actions: th.Tensor) -> th.Tensor: def log_prob(self, actions: th.Tensor) -> th.Tensor:
@ -156,24 +166,29 @@ class PCA_Distribution(SB3_Distribution):
return self.mode() return self.mode()
return self.sample(traj=trajectory) return self.sample(traj=trajectory)
def sample(self, traj: th.Tensor, f_sigma: int = 1, epsilon=None) -> th.Tensor: def sample(self, traj: th.Tensor, f_sigma: float = 1.0, epsilon=None) -> th.Tensor:
assert self.skip_conditioning or type(traj) != type(None), 'A past trajectory has to be supplied if conditinoning is performed' assert self.skip_conditioning or type(traj) != type(None), 'A past trajectory has to be supplied if conditinoning is performed'
pi_mean, pi_std = self.distribution.mean.cpu(), self.distribution.scale.cpu() pi_mean, pi_decomp = self.distribution.mean.cpu(), self.distribution.scale_tril.cpu() if self.is_full() else self.distribution.scale.cpu()
rho_mean, rho_std = self._conditioning_engine(traj, pi_mean, pi_std) rho_mean, rho_std = self._conditioning_engine(traj, pi_mean, pi_decomp)
rho_std = rho_std * f_sigma rho_std = rho_std * f_sigma
eta = self._get_rigged(pi_mean, pi_std, eta = self._get_rigged(pi_mean, pi_decomp,
rho_mean, rho_std, rho_mean, rho_std,
epsilon) epsilon)
# reparameterization with rigged samples # reparameterization with rigged samples
actions = pi_mean + pi_std * eta if self.is_full():
actions = pi_mean + th.matmul(pi_decomp, eta.unsqueeze(-1)).squeeze(-1)
else:
actions = pi_mean + pi_decomp * eta
self.gaussian_actions = actions self.gaussian_actions = actions
return actions return actions
def is_contextual(self): def is_contextual(self):
return True # TODO: Remove, when bug for non-contextual is fixed return self.par_strength in [Par_Strength.CONT_SCALAR, Par_Strength.CONT_DIAG, Par_Strength.CONT_HYBRID, Par_Strength.CONT_FULL]
# Always returning True will merely waste cpu cycles
return self.par_strength not in [Par_Strength.SCALAR, Par_Strength.DIAG] def is_full(self):
return self.par_strength in [Par_Strength.FULL, Par_Strength.CONT_FULL]
def _get_rigged(self, pi_mean, pi_std, rho_mean, rho_std, epsilon=None): def _get_rigged(self, pi_mean, pi_std, rho_mean, rho_std, epsilon=None):
# Ugly function to ensure, that the gradients flow as intended for each modus operandi # Ugly function to ensure, that the gradients flow as intended for each modus operandi
@ -251,7 +266,8 @@ class PCA_Distribution(SB3_Distribution):
# S_{ij} = \frac{1}{D_j} \left( A_{ij} - \sum_{k=1}^{j-1} S_{ik} S_{jk} D_k \right), \qquad\text{for } i>j # S_{ij} = \frac{1}{D_j} \left( A_{ij} - \sum_{k=1}^{j-1} S_{ik} S_{jk} D_k \right), \qquad\text{for } i>j
# https://martin-thoma.com/images/2012/07/cholesky-zerlegung-numerik.png # https://martin-thoma.com/images/2012/07/cholesky-zerlegung-numerik.png
# This way conditioning of the GP can be done in O(dim(A)) time. # This way conditioning of the GP can be done in O(dim(A)) time.
if not self.is_contextual(): if not self.is_contextual() and False:
# Always assuming contextual will merely waste cpu cycles
# TODO: fix, this does not work # TODO: fix, this does not work
# safe inplace # safe inplace
self.conditioner[-1, - self.conditioner[-1, -
@ -289,7 +305,7 @@ class PCA_Distribution(SB3_Distribution):
class StdNet(nn.Module): class StdNet(nn.Module):
def __init__(self, latent_dim: int, action_dim: int, std_init: float, par_strength: bool, epsilon: float, return_log_std): def __init__(self, latent_dim: int, action_dim: int, std_init: float, par_strength: bool, epsilon: float, return_log_std: bool):
super().__init__() super().__init__()
self.action_dim = action_dim self.action_dim = action_dim
self.latent_dim = latent_dim self.latent_dim = latent_dim
@ -299,8 +315,6 @@ class StdNet(nn.Module):
self.epsilon = epsilon self.epsilon = epsilon
self.return_log_std = return_log_std self.return_log_std = return_log_std
if return_log_std:
self.enforce_positive_type = EnforcePositiveType.NONE
if self.par_strength == Par_Strength.SCALAR: if self.par_strength == Par_Strength.SCALAR:
self.param = nn.Parameter( self.param = nn.Parameter(
@ -308,6 +322,11 @@ class StdNet(nn.Module):
elif self.par_strength == Par_Strength.DIAG: elif self.par_strength == Par_Strength.DIAG:
self.param = nn.Parameter( self.param = nn.Parameter(
th.Tensor(th.ones(action_dim)*std_init), requires_grad=True) th.Tensor(th.ones(action_dim)*std_init), requires_grad=True)
elif self.par_strength == Par_Strength.FULL:
ident = th.eye(action_dim)*std_init
ident_chol = fill_triangular_inverse(ident)
self.param = nn.Parameter(
th.Tensor(ident_chol), requires_grad=True)
elif self.par_strength == Par_Strength.CONT_SCALAR: elif self.par_strength == Par_Strength.CONT_SCALAR:
self.net = nn.Linear(latent_dim, 1) self.net = nn.Linear(latent_dim, 1)
elif self.par_strength == Par_Strength.CONT_HYBRID: elif self.par_strength == Par_Strength.CONT_HYBRID:
@ -316,6 +335,11 @@ class StdNet(nn.Module):
th.Tensor(th.ones(action_dim)*std_init), requires_grad=True) th.Tensor(th.ones(action_dim)*std_init), requires_grad=True)
elif self.par_strength == Par_Strength.CONT_DIAG: elif self.par_strength == Par_Strength.CONT_DIAG:
self.net = nn.Linear(latent_dim, self.action_dim) self.net = nn.Linear(latent_dim, self.action_dim)
self.bias = th.ones(action_dim)*self.std_init
elif self.par_strength == Par_Strength.CONT_FULL:
self.net = nn.Linear(latent_dim, action_dim * (action_dim + 1) // 2)
self.bias = fill_triangular_inverse(th.eye(action_dim)*self.std_init)
def forward(self, x: th.Tensor) -> th.Tensor: def forward(self, x: th.Tensor) -> th.Tensor:
if self.par_strength == Par_Strength.SCALAR: if self.par_strength == Par_Strength.SCALAR:
@ -323,6 +347,8 @@ class StdNet(nn.Module):
th.ones(self.action_dim) * self.param[0]) th.ones(self.action_dim) * self.param[0])
elif self.par_strength == Par_Strength.DIAG: elif self.par_strength == Par_Strength.DIAG:
return self._ensure_positive_func(self.param) return self._ensure_positive_func(self.param)
elif self.par_strength == Par_Strength.FULL:
return self._chol_from_flat(self.param)
elif self.par_strength == Par_Strength.CONT_SCALAR: elif self.par_strength == Par_Strength.CONT_SCALAR:
cont = self.net(x) cont = self.net(x)
diag_chol = th.ones(self.action_dim, device=cont.device) * cont * self.std_init diag_chol = th.ones(self.action_dim, device=cont.device) * cont * self.std_init
@ -332,14 +358,27 @@ class StdNet(nn.Module):
return self._ensure_positive_func(self.param * cont) return self._ensure_positive_func(self.param * cont)
elif self.par_strength == Par_Strength.CONT_DIAG: elif self.par_strength == Par_Strength.CONT_DIAG:
cont = self.net(x) cont = self.net(x)
diag_chol = cont * self.std_init diag_chol = cont + self.bias
return self._ensure_positive_func(diag_chol) return self._ensure_positive_func(diag_chol)
elif self.par_strength == Par_Strength.CONT_FULL:
cont = self.net(x)
return self._chol_from_flat(cont + self.bias)
raise Exception() raise Exception()
def _ensure_positive_func(self, x): def _ensure_positive_func(self, x):
return self.enforce_positive_type.apply(x) + self.epsilon return self.enforce_positive_type.apply(x) + self.epsilon
def _chol_from_flat(self, flat_chol):
chol = fill_triangular(flat_chol)
return self._ensure_diagonal_positive(chol)
def _ensure_diagonal_positive(self, chol):
if len(chol.shape) == 1:
# If our chol is a vector (representing a diagonal chol)
return self._ensure_positive_func(chol)
return chol.tril(-1) + self._ensure_positive_func(chol.diagonal(dim1=-2,
dim2=-1)).diag_embed() + chol.triu(1)
def string(self): def string(self):
return '<StdNet />' return '<StdNet />'

View File

@ -0,0 +1,150 @@
import torch as th
import numpy as np
def fill_triangular(x, upper=False):
"""
The following function is derived from TensorFlow Probability
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/math/linalg.py#L784
Copyright (c) 2018 The TensorFlow Probability Authors, licensed under the Apache-2.0 license,
cf. 3rd-party-licenses.txt file in the root directory of this source tree.
Creates a (batch of) triangular matrix from a vector of inputs.
Created matrix can be lower- or upper-triangular. (It is more efficient to
create the matrix as upper or lower, rather than transpose.)
Triangular matrix elements are filled in a clockwise spiral. See example,
below.
If `x.shape` is `[b1, b2, ..., bB, d]` then the output shape is
`[b1, b2, ..., bB, n, n]` where `n` is such that `d = n(n+1)/2`, i.e.,
`n = int(np.sqrt(0.25 + 2. * m) - 0.5)`.
Example:
```python
fill_triangular([1, 2, 3, 4, 5, 6])
# ==> [[4, 0, 0],
# [6, 5, 0],
# [3, 2, 1]]
fill_triangular([1, 2, 3, 4, 5, 6], upper=True)
# ==> [[1, 2, 3],
# [0, 5, 6],
# [0, 0, 4]]
```
The key trick is to create an upper triangular matrix by concatenating `x`
and a tail of itself, then reshaping.
Suppose that we are filling the upper triangle of an `n`-by-`n` matrix `M`
from a vector `x`. The matrix `M` contains n**2 entries total. The vector `x`
contains `n * (n+1) / 2` entries. For concreteness, we'll consider `n = 5`
(so `x` has `15` entries and `M` has `25`). We'll concatenate `x` and `x` with
the first (`n = 5`) elements removed and reversed:
```python
x = np.arange(15) + 1
xc = np.concatenate([x, x[5:][::-1]])
# ==> array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 14, 13,
# 12, 11, 10, 9, 8, 7, 6])
# (We add one to the arange result to disambiguate the zeros below the
# diagonal of our upper-triangular matrix from the first entry in `x`.)
# Now, when reshapedlay this out as a matrix:
y = np.reshape(xc, [5, 5])
# ==> array([[ 1, 2, 3, 4, 5],
# [ 6, 7, 8, 9, 10],
# [11, 12, 13, 14, 15],
# [15, 14, 13, 12, 11],
# [10, 9, 8, 7, 6]])
# Finally, zero the elements below the diagonal:
y = np.triu(y, k=0)
# ==> array([[ 1, 2, 3, 4, 5],
# [ 0, 7, 8, 9, 10],
# [ 0, 0, 13, 14, 15],
# [ 0, 0, 0, 12, 11],
# [ 0, 0, 0, 0, 6]])
```
From this example we see that the resuting matrix is upper-triangular, and
contains all the entries of x, as desired. The rest is details:
- If `n` is even, `x` doesn't exactly fill an even number of rows (it fills
`n / 2` rows and half of an additional row), but the whole scheme still
works.
- If we want a lower triangular matrix instead of an upper triangular,
we remove the first `n` elements from `x` rather than from the reversed
`x`.
For additional comparisons, a pure numpy version of this function can be found
in `distribution_util_test.py`, function `_fill_triangular`.
Args:
x: `Tensor` representing lower (or upper) triangular elements.
upper: Python `bool` representing whether output matrix should be upper
triangular (`True`) or lower triangular (`False`, default).
Returns:
tril: `Tensor` with lower (or upper) triangular elements filled from `x`.
Raises:
ValueError: if `x` cannot be mapped to a triangular matrix.
"""
m = np.int32(x.shape[-1])
# Formula derived by solving for n: m = n(n+1)/2.
n = np.sqrt(0.25 + 2. * m) - 0.5
if n != np.floor(n):
raise ValueError('Input right-most shape ({}) does not '
'correspond to a triangular matrix.'.format(m))
n = np.int32(n)
new_shape = x.shape[:-1] + (n, n)
ndims = len(x.shape)
if upper:
x_list = [x, th.flip(x[..., n:], dims=[ndims - 1])]
else:
x_list = [x[..., n:], th.flip(x, dims=[ndims - 1])]
x = th.cat(x_list, dim=-1).reshape(new_shape)
x = th.triu(x) if upper else th.tril(x)
return x
def fill_triangular_inverse(x, upper=False):
"""
The following function is derived from TensorFlow Probability
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/math/linalg.py#L934
Copyright (c) 2018 The TensorFlow Probability Authors, licensed under the Apache-2.0 license,
cf. 3rd-party-licenses.txt file in the root directory of this source tree.
Creates a vector from a (batch of) triangular matrix.
The vector is created from the lower-triangular or upper-triangular portion
depending on the value of the parameter `upper`.
If `x.shape` is `[b1, b2, ..., bB, n, n]` then the output shape is
`[b1, b2, ..., bB, d]` where `d = n (n + 1) / 2`.
Example:
```python
fill_triangular_inverse(
[[4, 0, 0],
[6, 5, 0],
[3, 2, 1]])
# ==> [1, 2, 3, 4, 5, 6]
fill_triangular_inverse(
[[1, 2, 3],
[0, 5, 6],
[0, 0, 4]], upper=True)
# ==> [1, 2, 3, 4, 5, 6]
```
Args:
x: `Tensor` representing lower (or upper) triangular elements.
upper: Python `bool` representing whether output matrix should be upper
triangular (`True`) or lower triangular (`False`, default).
Returns:
flat_tril: (Batch of) vector-shaped `Tensor` representing vectorized lower
(or upper) triangular elements from `x`.
"""
n = np.int32(x.shape[-1])
m = np.int32((n * (n + 1)) // 2)
ndims = len(x.shape)
if upper:
initial_elements = x[..., 0, :]
triangular_part = x[..., 1:, :]
else:
initial_elements = th.flip(x[..., -1, :], dims=[ndims - 2])
triangular_part = x[..., :-1, :]
rotated_triangular_portion = th.flip(
th.flip(triangular_part, dims=[ndims - 1]), dims=[ndims - 2])
consolidated_matrix = triangular_part + rotated_triangular_portion
end_sequence = consolidated_matrix.reshape(x.shape[:-2] + (n * (n - 1),))
y = th.cat([initial_elements, end_sequence[..., :m - n]], dim=-1)
return y