From 44b34fe12b59d28d48bd9a0db9dcf893a39dcc1c Mon Sep 17 00:00:00 2001 From: Dominik Roth Date: Wed, 3 May 2023 17:02:42 +0200 Subject: [PATCH] Implement 'plausability tests' of PCA vs REX / PINK in Columbus envs --- test.py | 61 ++++++++++++++++++++++++++++++--------------------------- 1 file changed, 32 insertions(+), 29 deletions(-) diff --git a/test.py b/test.py index 5a06baa..e8c0655 100644 --- a/test.py +++ b/test.py @@ -9,7 +9,7 @@ from columbus.observables import Observable, CnnObservable import colorednoise as cn -from pca import * +from priorConditionedAnnealing import pca def main(): @@ -72,7 +72,7 @@ def chooseEnv(): if envs[i] in [env.ColumbusConfigDefined]: return loadConfigDefinedEnv(envs[i]) Env = envs[i] - return Env(fps=30) + return Env(fps=30, agent_draw_path=True, path_decay=1/256) def value_func(obs): @@ -80,7 +80,7 @@ def value_func(obs): # return th.rand(obs.shape[0])-0.5 -def human_input(obs): +def human_input(obs, env): pos = (0.5, 0.5) pos = pygame.mouse.get_pos() pos = (min(max((pos[0]-env.joystick_offset[0]-20)/60, 0), 1), @@ -89,39 +89,40 @@ def human_input(obs): return pos -def colored_noise(beta=1, dim_a=2, samples=2**18): - index = [0]*dim_a - samples = [] - for d in range(dim_a): - samples.append(cn.powerlaw_psd_gaussian(beta, samples)) +class Colored_Noise(): + def __init__(self, beta=1, dim_a=2, samples=2**18): + self.index = 0 + self.samples = cn.powerlaw_psd_gaussian(beta, (dim_a, samples)) - def noise_generator(obs): - sample = [] - for d in range(dim_a): - sample.append(samples[d][index]) - index += 1 + def __call__(self, obs, env): + sample = self.samples[:, self.index] + self.index += 1 return sample - return noise_generator +class PCA_Noise(): + def __init__(self, dim_a=2, kernel_func='SE_1.41_1', window=8, ssf=-1): + self.dist = pca.PCA_Distribution( + action_dim=dim_a, par_strength='CONT_DIAG', kernel_func=kernel_func, window=window) + self.dist.proba_distribution(th.Tensor([[0]*2]), th.Tensor([[1]*2])) + self.traj = [[0]*dim_a] + self.ssf = 32 + self.index = 0 -def pca_noise(lengthscale=1, dim_a=2, kernel_func='RBF', window=16): - - dist = PCA_Distribution( - action_dim=dim_a, par_strength='SCALAR', kernel_func=kernel_func, window=window) - - traj = [] - - def noise_generator(obs): - sample = dist.sample(th.Tensor(traj)) - traj.append(sample) + def __call__(self, obs, env): + if self.index == self.ssf: + self.index = 0 + self.traj = [[0]*len(self.traj[0])] + traj = th.Tensor(self.traj).unsqueeze(0) + sample = self.dist.sample(traj).squeeze(0) + self.traj.append(sample) + self.index += 1 return sample - return noise_generator - def choosePlayType(): - options = {'human': human_input, 'REX': None, 'PCA': None, 'PINK': None} + options = {'human': human_input, 'PCA': PCA_Noise(), + 'REX': Colored_Noise(beta=0), 'PINK': Colored_Noise(beta=1), 'BROWN': Colored_Noise(beta=2), 'BETA.5': Colored_Noise(beta=.5)} for i, name in enumerate(options): print('['+str(i)+'] '+name) while True: @@ -130,10 +131,12 @@ def choosePlayType(): i = int(inp) except: print('[!] You have to enter the number...') + continue if i < 0 or i >= len(options): print( '[!] That is a number, but not one that makes sense in this context...') - return options[name] + else: + return options[list(options.keys())[i]] def playEnv(env, agent_func): @@ -143,7 +146,7 @@ def playEnv(env, agent_func): t1 = time() # env.render(value_func=value_func) env.render() - inp = agent_func(obs) + inp = agent_func(obs, env) obs, rew, done, info = env.step(np.array(inp, dtype=np.float32)) print('Reward: '+str(rew)) print('Score: '+str(info))