Implemented Perlin as underlying epsilon dist

This commit is contained in:
Dominik Moritz Roth 2023-05-04 12:17:43 +02:00
parent e44db33a91
commit 5f2d27efce

View File

@ -1,6 +1,7 @@
import numpy as np import numpy as np
import torch as th import torch as th
import colorednoise as cn import colorednoise as cn
from perlin_noise import PerlinNoise
from torch.distributions import Normal from torch.distributions import Normal
@ -78,3 +79,23 @@ class SDE_Noise():
# (batch_size, 1, n_actions) # (batch_size, 1, n_actions)
noise = th.bmm(th.bmm(latent_sde, self.exploration_matrices), chol) noise = th.bmm(th.bmm(latent_sde, self.exploration_matrices), chol)
return noise.squeeze(dim=1) return noise.squeeze(dim=1)
class Perlin_Noise():
def __init__(self, known_shape=None, scale=0.1, octaves=1):
self.known_shape = known_shape
self.scale = scale
self.octaves = octaves
self.magic = 3.14159 # Axis offset
# We want to genrate samples, that approx ~N(0,1)
self.normal_factor = 0.0471
self.reset()
def __call__(self, shape):
self.index += 1
return [self.noise([self.index*self.scale, self.magic*a]) / self.normal_factor
for a in range(self.shape[-1])]
def reset(self):
self.index = 0
self.noise = PerlinNoise(octaves=self.octaves)