import numpy as np import torch as th import colorednoise as cn from perlin_noise import PerlinNoise from torch.distributions import Normal class Colored_Noise(): def __init__(self, known_shape=None, beta=1, num_samples=2**14, random_state=None): assert known_shape, 'known_shape need to be defined for Colored Noise' self.known_shape = known_shape self.beta = beta self.num_samples = num_samples # Actually very cheap... self.index = 0 self.reset(random_state=random_state) def __call__(self, shape, latent: th.Tensor = None) -> th.Tensor: assert shape == self.shape sample = self.samples[:, self.index] self.index = (self.index+1) % self.num_samples return sample def reset(self, random_state=None): self.samples = cn.powerlaw_psd_gaussian( self.beta, self.known_shape + (self.num_samples,), random_state=random_state) class Pink_Noise(Colored_Noise): def __init__(self, known_shape=None, num_samples=2**14, random_state=None): super().__init__(known_shape=known_shape, beta=1, num_samples=num_samples, random_state=random_state) class White_Noise(): def __init__(self, known_shape=None): self.known_shape = known_shape def __call__(self, shape, latent: th.Tensor = None) -> th.Tensor: return th.Tensor(np.random.normal(0, 1, shape)) def get_colored_noise(beta, known_shape=None): if beta == 0: return White_Noise(known_shape) elif beta == 1: return Pink_Noise(known_shape) else: return Colored_Noise(known_shape, beta=beta) class SDE_Noise(): def __init__(self, shape, latent_sde_dim=64, Base_Noise=White_Noise): self.shape = shape self.latent_sde_dim = latent_sde_dim self.Base_Noise = Base_Noise batch_size = self.shape[0] self.weights_dist = self.Base_Noise( (self.latent_sde_dim,) + self.shape) self.weights_dist_batch = self.Base_Noise( (batch_size, self.latent_sde_dim,) + self.shape) def sample_weights(self): # Reparametrization trick to pass gradients self.exploration_mat = self.weights_dist.sample() # Pre-compute matrices in case of parallel exploration self.exploration_matrices = self.weights_dist_batch.sample() def __call__(self, latent: th.Tensor) -> th.Tensor: latent_sde = latent.detach() latent_sde = latent_sde[..., -self.sde_latent_dim:] latent_sde = th.nn.functional.normalize(latent_sde, dim=-1) p = self.distribution if isinstance(p, th.distributions.Normal) or isinstance(p, th.distributions.Independent): chol = th.diag_embed(self.distribution.stddev) elif isinstance(p, th.distributions.MultivariateNormal): chol = p.scale_tril # Default case: only one exploration matrix if len(latent_sde) == 1 or len(latent_sde) != len(self.exploration_matrices): return (th.mm(latent_sde, self.exploration_mat) @ chol)[0] # Use batch matrix multiplication for efficient computation # (batch_size, n_features) -> (batch_size, 1, n_features) latent_sde = latent_sde.unsqueeze(dim=1) # (batch_size, 1, n_actions) noise = th.bmm(th.bmm(latent_sde, self.exploration_matrices), chol) return noise.squeeze(dim=1) class Perlin_Noise(): def __init__(self, known_shape=None, scale=0.1, octaves=1): self.known_shape = known_shape self.scale = scale self.octaves = octaves self.magic = 0.141592653589 # Axis offset, should be (kinda) irrational # We want to genrate samples, that approx ~N(0,1) self.normal_factor = 0.0471 self.reset() def __call__(self, shape): self.index += 1 return [self.noise([self.index*self.scale, self.magic*(a+1)]) / self.normal_factor for a in range(self.known_shape[-1])] def reset(self): self.index = 0 self.noise = PerlinNoise(octaves=self.octaves)