PriorConditionedAnnealing/priorConditionedAnnealing/pca.py

302 lines
11 KiB
Python

from enum import Enum
import numpy as np
import torch as th
import scipy.spatial
from torch import nn
from stable_baselines3.common.distributions import Distribution as SB3_Distribution
from stable_baselines3.common.distributions import sum_independent_dims
from torch.distributions import Normal
import torch.nn.functional as F
from priorConditionedAnnealing import noise, kernel
class Par_Strength(Enum):
SCALAR = 'SCALAR'
DIAG = 'DIAG'
CONT_SCALAR = 'CONT_SCALAR'
CONT_DIAG = 'CONT_DIAG'
CONT_HYBRID = 'CONT_HYBRID'
class EnforcePositiveType(Enum):
# This need to be implemented in this ugly fashion,
# because cloudpickle does not like more complex enums
NONE = 0
SOFTPLUS = 1
ABS = 2
RELU = 3
LOG = 4
def apply(self, x):
# aaaaaa
return [nn.Identity(), nn.Softplus(beta=1, threshold=20), th.abs, nn.ReLU(inplace=False), th.log][self.value](x)
class Avaible_Kernel_Funcs(Enum):
RBF = 0
SE = 1
BROWN = 2
PINK = 3
def get_func(self):
# stil aaaaaaaa
return [kernel.rbf, kernel.se, kernel.brown, kernel.pink][self.value]
def cast_to_enum(inp, Class):
if isinstance(inp, Enum):
return inp
else:
return Class[inp]
def cast_to_kernel(inp):
if callable(inp):
return inp
else:
func, *pars = inp.split('_')
pars = [float(par) for par in pars]
return Avaible_Kernel_Funcs[func].get_func()(*pars)
class PCA_Distribution(SB3_Distribution):
def __init__(
self,
action_dim: int,
par_strength: Par_Strength = Par_Strength.CONT_DIAG,
kernel_func=kernel.rbf(),
init_std: float = 1,
cond_noise: float = 0,
window: int = 64,
epsilon: float = 1e-6,
skip_conditioning: bool = False,
Base_Noise=noise.White_Noise,
):
super().__init__()
self.action_dim = action_dim
self.kernel_func = cast_to_kernel(kernel_func)
self.par_strength = cast_to_enum(par_strength, Par_Strength)
self.init_std = init_std
self.cond_noise = cond_noise
self.window = window
self.epsilon = epsilon
self.skip_conditioning = skip_conditioning
self.base_noise = Base_Noise((1, action_dim))
if not isinstance(self.base_noise, noise.White_Noise):
print('[!] Non-White Noise was not yet tested!')
# Premature optimization is the root of all evil
self._build_conditioner()
# *Optimizes it anyways*
def proba_distribution_net(self, latent_dim: int):
mu_net = nn.Linear(latent_dim, self.action_dim)
std_net = StdNet(latent_dim, self.action_dim,
self.init_std, self.par_strength)
return mu_net, std_net
def proba_distribution(
self, mean_actions: th.Tensor, std_actions: th.Tensor) -> SB3_Distribution:
self.distribution = Normal(
mean_actions, std_actions)
return self
def log_prob(self, actions: th.Tensor) -> th.Tensor:
return sum_independent_dims(self.distribution.log_prob(actions))
def entropy(self) -> th.Tensor:
return sum_independent_dims(self.distribution.entropy())
def sample(self, traj: th.Tensor, f_sigma: int = 1, epsilon=None) -> th.Tensor:
pi_mean, pi_std = self.distribution.mean, self.distribution.scale
rho_mean, rho_std = self._conditioning_engine(traj, pi_mean, pi_std)
rho_std *= f_sigma
eta = self._get_rigged(pi_mean, pi_std,
rho_mean, rho_std,
epsilon)
# reparameterization with rigged samples
actions = pi_mean + pi_std * eta
self.gaussian_actions = actions
return actions
def is_contextual(self):
return self.par_strength not in [Par_Strength.SCALAR, Par_Strength.DIAG]
def _get_rigged(self, pi_mean, pi_std, rho_mean, rho_std, epsilon=None):
with th.no_grad():
if epsilon == None:
epsilon = self.base_noise(pi_mean.shape)
if self.skip_conditioning:
return epsilon.detach()
Delta = rho_mean - pi_mean
Pi_mu = 1 / pi_std
Pi_sigma = rho_std / pi_std
eta = Pi_mu * Delta + Pi_sigma * epsilon
return eta.detach()
def _pad_and_cut_trajectory(self, traj, value=0):
if traj.shape[-2] < self.window:
missing = self.window - traj.shape[-2]
return F.pad(input=traj, pad=(0, 0, missing, 0, 0, 0), value=value)
return traj[:, -self.window:, :]
def _conditioning_engine(self, trajectory, pi_mean, pi_std):
traj = self._pad_and_cut_trajectory(trajectory)
y_np = np.append(np.swapaxes(traj, -1, -2),
np.expand_dims(pi_mean, -1), -1)
with th.no_grad():
conditioners = th.Tensor(self._adapt_conditioner(pi_std))
y = th.Tensor(y_np)
S = th.cholesky_solve(self.Sig12.expand(
conditioners.shape[:-1]).unsqueeze(-1), conditioners).squeeze(-1)
rho_mean = th.einsum('bai,bai->ba', S, y)
rho_std = self.Sig22 - (S @ self.Sig12)
return rho_mean, rho_std
def _build_conditioner(self):
# Precomputes the Cholesky decomp of the cov matrix to be used as a pseudoinverse.
# Also precomputes some auxilary stuff for _adapt_conditioner.
w = self.window
Z = np.linspace(0, w, w+1).reshape(-1, 1)
X = np.array([w]).reshape(-1, 1)
Sig11 = self.kernel_func(
Z, Z) + np.diag(np.hstack((np.repeat(self.cond_noise**2, w), 0)))
self.Sig12 = th.Tensor(self.kernel_func(Z, X)).squeeze(-1)
self.Sig22 = th.Tensor(self.kernel_func(
X, X)).squeeze(-1).squeeze(-1)
self.conditioner = np.linalg.cholesky(Sig11)
self.adapt_norm = np.linalg.norm(
self.conditioner[-1, :][:-1], axis=-1)**2
def _adapt_conditioner(self, pi_std):
# We can not actually precompute the cov inverse completely,
# since it also depends on the current policies sigma.
# But, because of the way the Cholesky Decomp works,
# we can use the precomputed L (conditioner)
# (which is computed by an efficient LAPACK implementation)
# and adapt it for our new k(x_w+1,x_w+1) value (in python)
# (Which is dependent on pi)
# S_{ij} = \frac{1}{D_j} \left( A_{ij} - \sum_{k=1}^{j-1} S_{ik} S_{jk} D_k \right), \qquad\text{for } i>j
# https://martin-thoma.com/images/2012/07/cholesky-zerlegung-numerik.png
# This way conditioning of the GP can be done in O(dim(A)) time.
if not self.is_contextual():
# TODO: fix, this does not work
# safe inplace
self.conditioner[-1, -
1] = np.sqrt(pi_std**2 + self.Sig22 - self.adapt_norm)
return np.expand_dims(np.expand_dims(self.conditioner, 0), 0)
else:
conditioner = np.zeros(
(pi_std.shape[0], pi_std.shape[1]) + self.conditioner.shape)
conditioner[:, :] = self.conditioner
conditioner[:, :, -1, -
1] = np.sqrt(pi_std**2 + self.Sig22 - self.adapt_norm)
return conditioner
def mode(self) -> th.Tensor:
return self.distribution.mean
def actions_from_params(
self, mean: th.Tensor, std: th.Tensor, deterministic: bool = False
) -> th.Tensor:
self.proba_distribution(mean, std)
return self.get_actions(deterministic=deterministic)
def log_prob_from_params(self, mean: th.Tensor, std: th.Tensor):
actions = self.actions_from_params(mean, std)
log_prob = self.log_prob(actions)
return actions, log_prob
def print_info(self, traj: th.Tensor):
pi_mean, pi_std = self.distribution.mean, self.distribution.scale,
rho_mean, rho_std = self._conditioning_engine(traj, pi_mean, pi_std)
eta = self._get_rigged(pi_mean, pi_std,
rho_mean, rho_std)
print('pi ~ N('+str(pi_mean)+','+str(pi_std)+')')
print('rho ~ N('+str(rho_mean)+','+str(rho_std)+')')
class StdNet(nn.Module):
def __init__(self, latent_dim: int, action_dim: int, std_init: float, par_strength: bool, epsilon: float):
super().__init__()
self.action_dim = action_dim
self.latent_dim = latent_dim
self.std_init = std_init
self.par_strength = par_strength
self.enforce_positive_type = EnforcePositiveType.SOFTPLUS
self.epsilon = epsilon
if self.par_strength == Par_Strength.SCALAR:
self.param = nn.Parameter(
th.Tensor([std_init]), requires_grad=True)
elif self.par_strength == Par_Strength.DIAG:
self.param = nn.Parameter(
th.Tensor(th.ones(action_dim)*std_init), requires_grad=True)
elif self.par_strength == Par_Strength.CONT_SCALAR:
self.net = nn.Linear(latent_dim, 1)
elif self.par_strength == Par_Strength.CONT_HYBRID:
self.net = nn.Linear(latent_dim, 1)
self.param = nn.Parameter(
th.Tensor(th.ones(action_dim)*std_init), requires_grad=True)
elif self.par_strength == Par_Strength.CONT_DIAG:
self.net = nn.Linear(latent_dim, self.action_dim)
def forward(self, x: th.Tensor) -> th.Tensor:
if self.par_strength == Par_Strength.SCALAR:
return self._ensure_positive_func(
th.ones(self.action_dim) * self.param[0])
elif self.par_strength == Par_Strength.DIAG:
return self._ensure_positive_func(self.param)
elif self.par_strength == Par_Strength.CONT_SCALAR:
cont = self.net(x)
diag_chol = th.ones(self.action_dim) * cont * self.std_init
return self._ensure_positive_func(diag_chol)
elif self.par_strength == Par_Strength.CONT_HYBRID:
cont = self.net(x)
return self._ensure_positive_func(self.param * cont)
elif self.par_strength == Par_Strength.CONT_DIAG:
cont = self.net(x)
diag_chol = cont * self.std_init
return self._ensure_positive_func(diag_chol)
raise Exception()
def _ensure_positive_func(self, x):
return self.enforce_positive_type.apply(x) + self.epsilon
def string(self):
return '<StdNet />'
def test():
mu = th.Tensor([[0.0, 0.0]])
sigma = th.Tensor([[0.9, 0.1]])
traj = th.Tensor([[[-1.0, -1.0], [-0.4, -0.4], [0.3, 0.3]]])
d = PCA_Distribution(2, window=3)
d.proba_distribution(mu, sigma)
d.print_info(traj)
print(d.sample(traj))
return d
if __name__ == '__main__':
test()