import wandb import yaml import os import math import time import random import copy import re import itertools from collections.abc import * from functools import partial from multiprocessing import Process from threading import Thread import git import datetime from pprint import pprint import pdb d = pdb.set_trace REQUIRE_CONFIG_CONSUMED = False DEFAULT_START_METHOD = 'fork' DEFAULT_REINIT = True Parallelization_Primitive = Process # Thread try: import pyslurm except ImportError: slurm_avaible = False print('[!] Slurm not available.') else: slurm_avaible = True class Slate(): def __init__(self, runners): self.runners = { 'void': Void_Runner, 'printConfig': Print_Config_Runner, 'pdb': PDB_Runner, } self.runners.update(runners) self._version = False self.job_id = os.environ.get('SLURM_JOB_ID', False) self.task_id = None self.run_id = -1 self._tmp_path = os.path.expandvars('$TMP') self.verify = False def load_config(self, filename, name): emptyStack = [] config, stack = self._load_config(filename, name, stack=emptyStack) print('[i] Merged Configs: ', stack) self._config = copy.deepcopy(config) self.consume(config, 'vars', {}) return config def _load_config(self, filename, name, stack): stack.append(f'{filename}:{name}') with open(filename, 'r') as f: docs = yaml.safe_load_all(f) for doc in docs: if 'name' in doc: if doc['name'] == name: if 'import' in doc: imports = doc['import'].split(',') del doc['import'] for imp in imports: if imp[0] == ' ': imp = imp[1:] if imp == "$": imp = ':DEFAULT' rel_path, *opt = imp.split(':') if len(opt) == 0: nested_name = 'DEFAULT' elif len(opt) == 1: nested_name = opt[0] else: raise Exception('Malformed import statement. Must be , , for file:DEFAULT or for :DEFAULT.') nested_path = os.path.normpath(os.path.join(os.path.dirname(filename), rel_path)) if len(rel_path) else filename child, stack = self._load_config(nested_path, nested_name, stack=stack) doc = self.deep_update(child, doc) return doc, stack raise Exception(f'Unable to find experiment <{name}> in <{filename}>') def deep_update(self, d, u, traverse_dot_notation=True): for kstr, v in u.items(): if traverse_dot_notation: ks = kstr.split('.') else: ks = [kstr] head = d for k in ks: if k in ['parameters']: traverse_dot_notation = False last_head = head if k not in head: head[k] = {} head = head[k] if isinstance(v, Mapping): last_head[ks[-1]] = self.deep_update(d.get(k, {}), v, traverse_dot_notation=traverse_dot_notation) else: last_head[ks[-1]] = v return d def expand_vars(self, string, delta_desc='BASE', **kwargs): if isinstance(string, str): rand = int(random.random() * 99999999) if string == '{rand}': return rand return string.format(delta_desc=delta_desc, **kwargs, rand=rand, tmp=self._tmp_path, job_id=(self.job_id or 'LOCAL'), task_id=(self.task_id or 0), run_id=self.run_id) return string def apply_nested(self, d, f): for k, v in d.items(): if isinstance(v, dict): self.apply_nested(v, f) elif isinstance(v, list): for i, e in enumerate(v): ptr = {'PTR': d[k][i]} self.apply_nested(ptr, f) d[k][i] = ptr['PTR'] else: d[k] = f(v) def deep_expand_vars(self, dict, **kwargs): self.apply_nested(dict, lambda x: self.expand_vars(x, **kwargs)) def consume(self, conf, key, default=None, expand=False, **kwargs): if key == '': if expand: self.deep_expand_vars(conf, config=self._config, **kwargs) elif type(conf) == str: while conf.find('{') != -1: conf = self.expand_vars(conf, config=self._config, **kwargs) return conf keys_arr = key.split('.') if len(keys_arr) == 1: k = keys_arr[0] if default is not None: if isinstance(conf, Mapping): val = conf.get(k, default) else: if default is not None: return default raise Exception('') else: val = conf[k] if k in conf: del conf[k] if expand: self.deep_expand_vars(val, config=self._config, **kwargs) elif type(val) == str: while val.find('{') != -1: val = self.expand_vars(val, config=self._config, **kwargs) return val child = conf.get(keys_arr[0], {}) child_keys = '.'.join(keys_arr[1:]) return self.consume(child, child_keys, default=default, expand=expand, **kwargs) def get_version(self): if not self._version: repo = git.Repo(search_parent_directories=True) sha = repo.head.object.hexsha self._version = sha return self._version def _calc_num_jobs(self, schedC, num_conv_versions): schedulerC = copy.deepcopy(schedC) reps = self.consume(schedulerC, 'repetitions', self.consume(schedulerC, 'reps_per_version', 1) * num_conv_versions) agents_per_job = self.consume(schedulerC, 'agents_per_job', 1) reps_per_agent = self.consume(schedulerC, 'reps_per_agent', 1) reps_per_job = reps_per_agent * agents_per_job jobs_needed = math.ceil(reps / reps_per_job) return jobs_needed def _reps_for_job(self, schedC, task_id, num_conv_versions): schedulerC = copy.deepcopy(schedC) num_jobs = self._calc_num_jobs(schedulerC, num_conv_versions) reps = self.consume(schedulerC, 'repetitions', self.consume(schedulerC, 'reps_per_version', 1) * num_conv_versions) if task_id is None: return list(range(0, reps)) reps_for_job = [[] for _ in range(num_jobs)] for i in range(reps): reps_for_job[i % num_jobs].append(i) return reps_for_job[task_id] def _make_configs_for_runs(self, config_exp_pairs): """ Expand configurations across all provided experiments, grid, and ablation variants. Parameters: config_exp_pairs (list): A list of tuples where each tuple contains (filename, experiment name). Returns: list: A list of expanded configurations ready for execution. """ all_expanded_configs = [] for config, exp in config_exp_pairs: config_data = self.load_config(config, exp) grid_versions = self._make_grid_versions(config_data) exp_variants = self._make_ablative_versions(config_data, grid_versions) all_expanded_configs.extend(exp_variants) return all_expanded_configs def run_local(self, config_exp_pairs, task_id): """ Run all expanded configurations locally, handling all variants and their repetitions concurrently. Parameters: config_exp_pairs (list): A list of tuples where each tuple contains (filename, experiment name). task_id (int): The task ID for the experiments. """ self.task_id = task_id all_configs = self._make_configs_for_runs(config_exp_pairs) num_conv_versions = len(all_configs) schedulerC = copy.deepcopy(all_configs[0].get('scheduler', {})) rep_ids = self._reps_for_job(schedulerC, task_id, num_conv_versions) self._fork_processes(all_configs, rep_ids) def run_slurm(self, original_config_exp_string, config_exp_pairs): """ Schedule all expanded configurations on SLURM within a single job. Parameters: original_config_exp_string (str): The original string of config:experiment pairs provided by the user. config_exp_pairs (list): A list of tuples where each tuple contains (filename, experiment name). """ all_configs = self._make_configs_for_runs(config_exp_pairs) slurmC = self.consume(all_configs[0], 'slurm', expand=True) s_name = self.consume(slurmC, 'name') python_script = 'main.py' sh_lines = ['#!/bin/bash'] sh_lines += self.consume(slurmC, 'sh_lines', []) if venv := self.consume(slurmC, 'venv', False): sh_lines += [f'source activate {venv}'] # Use the original config:experiment string to avoid verbosity final_line = f'{python_script} {original_config_exp_string} -t $SLURM_ARRAY_TASK_ID' if self.consume(slurmC, 'python_exec', False): final_line = f'./omni_sif_python {final_line}' else: final_line = f'python3 {final_line}' if self.consume(slurmC, 'xvfb', False): final_line = f'xvfb-run {final_line}' sh_lines.append(final_line) script = "\n".join(sh_lines) num_jobs = self._calc_num_jobs(all_configs[0].get('scheduler', {}), len(all_configs)) last_job_idx = num_jobs - 1 num_parallel_jobs = min(self.consume(slurmC, 'num_parallel_jobs', num_jobs), num_jobs) array = f'0-{last_job_idx}%{num_parallel_jobs}' job = pyslurm.JobSubmitDescription(name=s_name, script=script, array=array, **slurmC) if self.verify: input(f'[!] Press Enter to submit the job to SLURM.') job_id = job.submit() print(f'[>] Job submitted to SLURM with id {job_id}') # Log file entry optimization with open('job_hist.log', 'a') as f: config_logs = {} for config, exp in config_exp_pairs: if config not in config_logs: config_logs[config] = [] config_logs[config].append(exp) for config, exps in config_logs.items(): exps_str = ",".join(exps) f.write(f'{config}:{exps_str} submitted to SLURM with id {job_id}\n') def _fork_processes(self, configs, rep_ids): """ Fork processes to run all expanded configurations concurrently. Parameters: configs (list): A list of expanded configurations. rep_ids (list): A list of repetition identifiers for the configurations. """ schedC = self.consume(configs[0], 'scheduler', {}) agents_per_job = self.consume(schedC, 'agents_per_job', 1) reps_per_agent = self.consume(schedC, 'reps_per_agent', 1) node_reps = len(rep_ids) num_p = min(agents_per_job, math.ceil(node_reps / reps_per_agent)) if num_p == 1: print('[i] Running within main thread') self._run_process(configs, rep_ids=rep_ids, p_ind=0) return procs = [] reps_done = 0 for p in range(num_p): print(f'[i] Spawning separate thread/process ({p+1}/{num_p})') num_reps = min(node_reps - reps_done, reps_per_agent) proc_rep_ids = [rep_ids[i] for i in list(range(reps_done, reps_done + num_reps))] proc_configs = [configs[i % len(configs)] for i in proc_rep_ids] # Distribute configs across processes proc = Parallelization_Primitive(target=partial(self._run_process, proc_configs, proc_rep_ids, p_ind=p)) proc.start() procs.append(proc) reps_done += num_reps for proc in procs: proc.join() print('[i] All threads/processes have terminated') def _run_process(self, orig_configs, rep_ids, p_ind): """ Run a single process for a subset of configurations. Parameters: configs (list): A list of configurations to run. rep_ids (list): A list of repetition identifiers for the configurations. p_ind (int): Process index. """ for r in rep_ids: self.run_id = r config = orig_configs[r % len(orig_configs)] self._run_single(config, [r], p_ind=p_ind) def _run_single(self, orig_config, rep_ids, p_ind): print(f'[P{p_ind}] I will work on reps {rep_ids}') self._config = orig_config runnerName = self.consume(orig_config, 'runner') project = self.consume(orig_config, 'wandb.project', orig_config.get('project', orig_config.get('name'))) Runner = self.runners[runnerName] if self.consume(orig_config, 'scheduler.bind_agent_to_core', False): os.sched_setaffinity(0, [p_ind % os.cpu_count()]) for r in rep_ids: self.run_id = r runnerConf = copy.deepcopy(orig_config) wandbC = self.consume(runnerConf, 'wandb', {}, expand=True, delta_desc=runnerConf.pop('delta_desc', 'BASE')) if 'job_type' in wandbC and len(wandbC['job_type']) > 62: wandbC['job_type'] = "..."+wandbC['job_type'][-50:] retry = 5 while retry: try: with wandb.init( project=project, config=copy.deepcopy(runnerConf), reinit=self.consume(wandbC, 'reinit', DEFAULT_REINIT), settings=wandb.Settings(**self.consume(wandbC, 'settings', {})), **wandbC ) as run: runner = Runner(self, runnerConf) runner.setup(wandbC['group']+wandbC['job_type']) runner.run(run) except wandb.errors.CommError as e: retry -= 1 if retry: print('Caught CommErr; retrying...') time.sleep(int(60*random.random())) else: print('Caught CommErr; not retrying') raise e else: retry = 0 if runnerConf != {}: msg = ('Config was not completely consumed: ', runnerConf) if REQUIRE_CONFIG_CONSUMED: raise Exception(msg) else: print(msg) orig_config = {} def _get_num_conv_versions(self, config): return len(self._make_configs_for_runs(config)) def _make_grid_versions(self, config): if 'grid' in config: return params_combine(config, 'grid', itertools.product) return [config] def _make_ablative_versions(self, config, grid_versions): if 'ablative' in config: return grid_versions + ablative_expand(grid_versions) else: return grid_versions def from_args(self): import argparse parser = argparse.ArgumentParser() parser.add_argument("config_experiments", nargs='+', help="List of config:experiment pairs") parser.add_argument("-s", "--slurm", action="store_true") parser.add_argument("-w", "--worker", action="store_true") parser.add_argument("-t", "--task_id", default=None, type=int) parser.add_argument("--ask_verify", action="store_true") args = parser.parse_args() print(f'[i] I have task_id {args.task_id}') print(f'[i] Running on version [git:{self.get_version()}]') if args.worker: raise Exception('Worker mode not yet implemented') config_exp_pairs = [] for config_exp in args.config_experiments: config, exps = config_exp.split(":") exp_list = exps.split(",") for exp in exp_list: config_exp_pairs.append((config, exp)) if args.slurm: if args.ask_verify: self.verify = True self.run_slurm(' '.join(args.config_experiments), config_exp_pairs) else: self.run_local(config_exp_pairs, args.task_id) def params_combine(config: dict, key: str, iter_func): if iter_func is None: return [config] combined_configs = [] tuple_dict = flatten_dict_to_tuple_keys(config[key]) _param_names = ['.'.join(t) for t in tuple_dict] for values in iter_func(*tuple_dict.values()): _config = copy.deepcopy(config) del _config[key] for i, t in enumerate(tuple_dict.keys()): insert_deep_dictionary(d=_config, t=t, value=values[i]) _config = extend_config_name(_config, _param_names, values) combined_configs.append(_config) return combined_configs def ablative_expand(conf_list): combined_configs = [] for config in conf_list: tuple_dict = flatten_dict_to_tuple_keys(config['ablative']) _param_names = ['.'.join(t) for t in tuple_dict] for i, key in enumerate(tuple_dict): for val in tuple_dict[key]: _config = copy.deepcopy(config) insert_deep_dictionary(_config, key, val) _config = extend_config_name(_config, [_param_names[i]], [val]) combined_configs.append(_config) return combined_configs def flatten_dict_to_tuple_keys(d: MutableMapping): flat_dict = {} for k, v in d.items(): if isinstance(v, MutableMapping): sub_dict = flatten_dict_to_tuple_keys(v) flat_dict.update({(k, *sk): sv for sk, sv in sub_dict.items()}) elif isinstance(v, MutableSequence): flat_dict[(k,)] = v return flat_dict def insert_deep_dictionary(d: MutableMapping, t: tuple, value): if type(t) is tuple: if len(t) == 1: d[t[0]] = value else: if t[0] not in d: d[t[0]] = dict() insert_deep_dictionary(d[t[0]], t[1:], value) else: d[t] = value def append_deep_dictionary(d: MutableMapping, t: tuple, value): if type(t) is tuple: if len(t) == 1: if t[0] not in d: d[t[0]] = [] d[t[0]].append(value) else: if t[0] not in d: d[t[0]] = dict() append_deep_dictionary(d[t[0]], t[1:], value) else: d[t] = value def extend_config_name(config: dict, param_names: list, values: list) -> dict: _converted_name = convert_param_names(param_names, values) config['delta_desc'] = config['delta_desc'] + '_' + _converted_name if 'delta_desc' in config else _converted_name return config def convert_param_names(_param_names: list, values: list) -> str: _converted_name = '_'.join("{}{}".format(shorten_param(k), v) for k, v in zip(_param_names, values)) _converted_name = re.sub("[' ]", '', _converted_name) _converted_name = re.sub('["]', '', _converted_name) _converted_name = re.sub("[(\[]", '_', _converted_name) _converted_name = re.sub("[)\]]", '', _converted_name) _converted_name = re.sub("[,]", '_', _converted_name) return _converted_name def shorten_param(_param_name): name_parts = _param_name.split('.') shortened_parts = '.'.join(map(lambda s: s[:3], name_parts[:-1])) shortened_leaf = ''.join(map(lambda s: s[0], name_parts[-1].split('_'))) if shortened_parts: return shortened_parts + '.' + shortened_leaf else: return shortened_leaf class Slate_Runner(): def __init__(self, slate, config): self.slate = slate self.config = config def setup(self, name): pass def run(self, run): pass class Print_Config_Runner(Slate_Runner): def run(self, run): slate, config = self.slate, self.config pprint(config) print('---') pprint(slate.consume(config, '', expand=True)) for k in list(config.keys()): del config[k] class Void_Runner(Slate_Runner): def run(self, run): slate, config = self.slate, self.config for k in list(config.keys()): del config[k] class PDB_Runner(Slate_Runner): def run(self, run): d() if __name__ == '__main__': raise Exception('You are using it wrong...')