bug fixes

This commit is contained in:
Dominik Moritz Roth 2024-05-26 00:28:18 +02:00
parent b4f6e87395
commit 2ce2e8c384
2 changed files with 20 additions and 10 deletions

21
main.py
View File

@ -13,6 +13,7 @@ from pycallgraph2.output import GraphvizOutput
from slate import Slate, Slate_Runner
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#device = 'cpu'
class SpikeRunner(Slate_Runner):
def setup(self, name):
@ -101,6 +102,8 @@ class SpikeRunner(Slate_Runner):
for epoch in range(self.epochs):
total_loss = 0
errs = []
rels = []
for batch_num in range(self.num_batches):
# Create indices for training data and shuffle them
@ -115,7 +118,7 @@ class SpikeRunner(Slate_Runner):
lead_data = self.train_data[idx][:min_length]
# Slide a window over the data with overlap
stride = max(1, self.input_size // 8) # Ensuring stride is at least 1
stride = max(1, self.input_size // 3) # Ensuring stride is at least 1
for i in range(0, len(lead_data) - self.input_size-1, stride):
lead_segment = lead_data[i:i + self.input_size]
inputs = torch.tensor(lead_segment, dtype=torch.float32).to(device)
@ -123,9 +126,9 @@ class SpikeRunner(Slate_Runner):
# Collect the segments for the current lead and its peers
peer_segments = []
for peer_idx in self.sorted_peer_indices[idx]:
peer_segment = self.train_data[peer_idx][i:i + self.input_size][:min_length]
peer_segment = self.train_data[peer_idx][i:i + self.input_size]
peer_segments.append(torch.tensor(peer_segment, dtype=torch.float32).to(device))
peer_correlation = torch.tensor([self.correlation_matrix[idx, peer_idx] for peer_idx in self.sorted_peer_indices[idx]], dtype=torch.float32).to(device) # Shape: (num_peers)
peer_correlation = torch.tensor([self.correlation_matrix[idx, peer_idx] for peer_idx in self.sorted_peer_indices[idx]], dtype=torch.float32).to(device)
peer_correlations.append(peer_correlation)
# Stack the segments to form the batch
@ -145,13 +148,20 @@ class SpikeRunner(Slate_Runner):
prediction = self.predictor(new_latent)
# Calculate loss and backpropagate
loss = self.criterion(prediction, torch.tensor(targets, dtype=torch.float32).unsqueeze(-1).to(device))
tar = torch.tensor(targets, dtype=torch.float32).unsqueeze(-1).to(device)
loss = self.criterion(prediction, tar)
err = np.sum(np.abs(prediction.cpu().detach().numpy() - tar.cpu().detach().numpy()))
rel = err / np.sum(tar.cpu().detach().numpy())
total_loss += loss.item()
errs.append(err.item())
rels.append(rel.item())
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
wandb.log({"epoch": epoch, "loss": total_loss}, step=epoch)
tot_err = sum(errs)/len(errs)
tot_rel = sum(rels)/len(rels)
wandb.log({"epoch": epoch, "loss": total_loss, "err": tot_err, "rel": tot_rel}, step=epoch)
print(f'Epoch {epoch + 1}/{self.epochs}, Loss: {total_loss}')
if self.eval_freq != -1 and (epoch + 1) % self.eval_freq == 0:
@ -281,7 +291,6 @@ class SpikeRunner(Slate_Runner):
print('Evaluation done for this epoch.')
return avg_loss
def save_models(self, epoch):
return
print('Saving models...')

View File

@ -37,8 +37,9 @@ class LatentRNNProjector(nn.Module):
self.latent_size = latent_size
def forward(self, x):
out, _ = self.rnn(x)
latent = self.fc(out)
batch_1, batch_2, timesteps = x.size()
out, _ = self.rnn(x.view(batch_1 * batch_2, timesteps))
latent = self.fc(out).view(batch_1, batch_2, self.latent_size)
return latent
class MiddleOut(nn.Module):
@ -57,7 +58,7 @@ class MiddleOut(nn.Module):
new_latents = torch.stack(new_latents)
averaged_latent = torch.mean(new_latents, dim=0)
return my_latent - averaged_latent
return averaged_latent
class Predictor(nn.Module):
def __init__(self, output_size, layer_shapes, activations):
@ -73,4 +74,4 @@ class Predictor(nn.Module):
self.fc = nn.Sequential(*layers)
def forward(self, latent):
return self.fc(latent)
return self.fc(latent)