diff --git a/config.yaml b/config.yaml index f148cf7..2b2d991 100644 --- a/config.yaml +++ b/config.yaml @@ -105,6 +105,7 @@ training: save_path: models peer_gradients_factor: 0.25 value_scale: 1000 + device: cpu middle_out: residual: false @@ -300,7 +301,7 @@ training: grid: training.value_scale: [1, 100, 1000, 10000] --- -name: FC_BSAbl2 +name: FC_BSAbl3 # 64 is best, everything >=64 is ok import: $ latent_projector: @@ -327,4 +328,201 @@ training: device: cpu grid: - training.batch_size: [64, 128, 256] \ No newline at end of file + training.batch_size: [64, 128, 256] +--- +name: FC_smol_master +import: $ + +scheduler: + reps_per_version: 8 + agents_per_job: 8 + +latent_projector: + type: fc + input_size: 195 + latent_size: 4 + layer_shapes: [20, 6] + activations: ['ReLU', 'ReLU'] + +middle_out: + region_latent_size: 4 + num_peers: 2 + residual: true + +predictor: + layer_shapes: [2] + activations: ['ReLU'] + +training: + epochs: 10000 + batch_size: 32 + num_batches: 1 + learning_rate: 0.01 + device: cpu +--- +name: FC_smolTanh +import: $ + +latent_projector: + type: fc + input_size: 195 + latent_size: 4 + layer_shapes: [20, 6] + activations: ['Tanh', 'Tanh'] + +middle_out: + region_latent_size: 4 + num_peers: 2 + residual: true + +predictor: + layer_shapes: [2] + activations: ['Tanh'] + +training: + epochs: 1024 + batch_size: 32 + num_batches: 1 + learning_rate: 0.01 + device: cpu +--- +name: FOURIER_thin +import: $ + +latent_projector: + type: fourier + input_size: 1953 # 0.1s + latent_size: 4 + layer_shapes: [32, 8] + activations: ['ReLU', 'ReLU'] + pass_raw_len: 195 # 0.01s + +middle_out: + region_latent_size: 4 + num_peers: 3 + residual: true + +predictor: + layer_shapes: [3] + activations: ['ReLU'] + +training: + epochs: 1024 + batch_size: 32 + num_batches: 1 + learning_rate: 0.01 +--- +name: FOURIER_thicc +import: $ + +latent_projector: + type: fourier + input_size: 1953 # 0.1s + latent_size: 8 + layer_shapes: [32, 8] + activations: ['ReLU', 'ReLU'] + pass_raw_len: 195 # 0.01s + +middle_out: + region_latent_size: 8 + num_peers: 3 + residual: true + +predictor: + layer_shapes: [4] + activations: ['ReLU'] + +training: + epochs: 1024 + batch_size: 32 + num_batches: 1 + learning_rate: 0.01 +--- +name: FC_master2 +import: $ + +scheduler: + reps_per_version: 8 + agents_per_job: 8 + +latent_projector: + type: fc + input_size: 1953 + latent_size: 4 + layer_shapes: [32, 8] + activations: ['ReLU', 'ReLU'] + +middle_out: + region_latent_size: 4 + num_peers: 3 + residual: true + +predictor: + layer_shapes: [3] + activations: ['ReLU'] + +training: + epochs: 1024 + batch_size: 32 + num_batches: 1 + learning_rate: 0.01 +--- +name: debug +import: $ + +scheduler: + reps_per_version: 1 + agents_per_job: 1 + +latent_projector: + type: fc + input_size: 1953 + latent_size: 4 + layer_shapes: [32, 8] + activations: ['ReLU', 'ReLU'] + +middle_out: + region_latent_size: 4 + num_peers: 3 + residual: true + +predictor: + layer_shapes: [3] + activations: ['ReLU'] + +training: + epochs: 1024 + batch_size: 32 + num_batches: 1 + learning_rate: 0.01 +--- +name: FOURIER_smol_master +import: $ + +scheduler: + reps_per_version: 8 + agents_per_job: 8 + +latent_projector: + type: fourier + input_size: 195 + latent_size: 4 + layer_shapes: [20, 6] + activations: ['ReLU', 'ReLU'] + pass_raw_len: 20 # 0.001s + +middle_out: + region_latent_size: 4 + num_peers: 2 + residual: true + +predictor: + layer_shapes: [2] + activations: ['ReLU'] + +training: + epochs: 10000 + batch_size: 32 + num_batches: 1 + learning_rate: 0.01 + device: cpu \ No newline at end of file