diff --git a/config.yaml b/config.yaml index 2b2d991..2121aa5 100644 --- a/config.yaml +++ b/config.yaml @@ -26,7 +26,7 @@ training: learning_rate: 0.01 # Learning rate for the optimizer. peer_gradients_factor: 0.33 # Factor for gradients acting on predictor throught peers. 0.0 = detach gradients. value_scale: 1 # Normalize data by dividing values by this (and multiple outputs) - eval_freq: -1 # Frequency of evaluation during training (in epochs). + eval_freq: 8 # Frequency of evaluation during training (in epochs). save_path: models # Directory to save the best model and encoder. evaluation: @@ -89,7 +89,7 @@ evaluation: full_compression: false bitstream_encoding: - type: identity + type: binomHuffman data: url: https://content.neuralink.com/compression-challenge/data.zip @@ -101,7 +101,7 @@ profiler: enable: false training: - eval_freq: -1 # 8 + eval_freq: 8 save_path: models peer_gradients_factor: 0.25 value_scale: 1000 @@ -330,7 +330,7 @@ training: grid: training.batch_size: [64, 128, 256] --- -name: FC_smol_master +name: FC_smol_master2 import: $ scheduler: @@ -438,7 +438,7 @@ training: num_batches: 1 learning_rate: 0.01 --- -name: FC_master2 +name: FC_master3 import: $ scheduler: @@ -461,6 +461,35 @@ predictor: layer_shapes: [3] activations: ['ReLU'] +training: + epochs: 1024 + batch_size: 32 + num_batches: 1 + learning_rate: 0.01 +--- +name: FC_master_single +import: $ + +scheduler: + reps_per_version: 1 + agents_per_job: 1 + +latent_projector: + type: fc + input_size: 1953 + latent_size: 4 + layer_shapes: [32, 8] + activations: ['ReLU', 'ReLU'] + +middle_out: + region_latent_size: 4 + num_peers: 3 + residual: true + +predictor: + layer_shapes: [3] + activations: ['ReLU'] + training: epochs: 1024 batch_size: 32