diff --git a/config.yaml b/config.yaml index 382fb8f..9a12314 100644 --- a/config.yaml +++ b/config.yaml @@ -42,21 +42,21 @@ name: Test import: $ latent_projector: - type: fc # Options: 'fc', 'rnn' - input_size: 50 # Input size for the Latent Projector (length of snippets). + type: rnn # Options: 'fc', 'rnn' + input_size: 19531 # =1s Input size for the Latent Projector (length of snippets). latent_size: 8 # Size of the latent representation before message passing. - layer_shapes: [16, 32] # List of layer sizes for the latent projector (if type is 'fc'). + layer_shapes: [256, 32] # List of layer sizes for the latent projector (if type is 'fc'). activations: ['relu', 'relu'] # Activation functions for the latent projector layers (if type is 'fc'). - rnn_hidden_size: 32 # Hidden size for the RNN projector (if type is 'rnn'). + rnn_hidden_size: 16 # Hidden size for the RNN projector (if type is 'rnn'). rnn_num_layers: 2 # Number of layers for the RNN projector (if type is 'rnn'). middle_out: - output_size: 16 # Size of the latent representation after message passing. - num_peers: 3 # Number of most correlated peers to consider. + output_size: 8 # Size of the latent representation after message passing. + num_peers: 8 # Number of most correlated peers to consider. predictor: - layer_shapes: [32, 16] # List of layer sizes for the predictor. - activations: ['relu', 'relu'] # Activation functions for the predictor layers. + layer_shapes: [8, 4] # List of layer sizes for the predictor. + activations: ['relu', 'none'] # Activation functions for the predictor layers. training: epochs: 128 # Number of training epochs. @@ -70,7 +70,7 @@ evaluation: full_compression: false # Perform full compression during evaluation bitstream_encoding: - type: identity # Options: 'arithmetic', 'no_compression', 'bzip2' + type: identity # Options: 'arithmetic', 'identity', 'bzip2' data: url: https://content.neuralink.com/compression-challenge/data.zip # URL to download the dataset.