Cleaned up config
This commit is contained in:
parent
5a3d491109
commit
a6f0903d8c
154
config.yaml
154
config.yaml
@ -1,3 +1,51 @@
|
|||||||
|
name: EXAMPLE
|
||||||
|
|
||||||
|
latent_projector:
|
||||||
|
type: fc # Type of latent projector: 'fc', 'rnn', 'fourier'
|
||||||
|
input_size: 1953 # Input size for the Latent Projector (length of snippets).
|
||||||
|
latent_size: 4 # Size of the latent representation before message passing.
|
||||||
|
layer_shapes: [32, 8] # List of layer sizes for the latent projector if type is 'fc' or 'fourier'.
|
||||||
|
activations: ['ReLU', 'ReLU'] # Activation functions for the latent projector layers if type is 'fc' or 'fourier'.
|
||||||
|
rnn_hidden_size: 4 # Hidden size for the RNN projector if type is 'rnn'.
|
||||||
|
rnn_num_layers: 1 # Number of layers for the RNN projector if type is 'rnn'.
|
||||||
|
num_frequencies: 16 # Number of frequency bins for the Fourier decomposition if type is 'fourier'.
|
||||||
|
pass_raw_len: 50 # Number of last samples to pass raw to the net in addition to frequencies (null = all) if type is 'fourier'.
|
||||||
|
|
||||||
|
middle_out:
|
||||||
|
region_latent_size: 4 # Size of the latent representation after message passing.
|
||||||
|
residual: false # Wether to use a ResNet style setup. Requires region_latent_size = latent_size
|
||||||
|
num_peers: 3 # Number of closest peers to consider.
|
||||||
|
|
||||||
|
predictor:
|
||||||
|
layer_shapes: [3] # List of layer sizes for the predictor.
|
||||||
|
activations: ['ReLU'] # Activation functions for the predictor layers.
|
||||||
|
|
||||||
|
training:
|
||||||
|
epochs: 1024 # Number of training epochs.
|
||||||
|
batch_size: 32 # Batch size for training.
|
||||||
|
num_batches: 1 # Number of batches per epoch.
|
||||||
|
learning_rate: 0.01 # Learning rate for the optimizer.
|
||||||
|
peer_gradients: true # Wether we allow gradients flow to the latent projector for peers. Leads to higher sample efficiency but also less stability.
|
||||||
|
eval_freq: -1 # Frequency of evaluation during training (in epochs).
|
||||||
|
save_path: models # Directory to save the best model and encoder.
|
||||||
|
|
||||||
|
evaluation:
|
||||||
|
full_compression: false # Perform full compression during evaluation.
|
||||||
|
|
||||||
|
bitstream_encoding:
|
||||||
|
type: identity # Bitstream encoding type: 'arithmetic', 'identity', 'bzip2'.
|
||||||
|
|
||||||
|
data:
|
||||||
|
url: https://content.neuralink.com/compression-challenge/data.zip # URL to download the dataset.
|
||||||
|
directory: data # Directory to extract and store the dataset.
|
||||||
|
split_ratio: 0.8 # Ratio to split the data into train and test sets.
|
||||||
|
cut_length: null # Optional length to cut sequences to.
|
||||||
|
|
||||||
|
profiler:
|
||||||
|
enable: false # Enable profiler.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
name: DEFAULT
|
name: DEFAULT
|
||||||
project: Spikey_1
|
project: Spikey_1
|
||||||
|
|
||||||
@ -38,100 +86,96 @@ wandb:
|
|||||||
save_code: False
|
save_code: False
|
||||||
|
|
||||||
evaluation:
|
evaluation:
|
||||||
full_compression: false # Perform full compression during evaluation
|
full_compression: false
|
||||||
|
|
||||||
bitstream_encoding:
|
bitstream_encoding:
|
||||||
type: identity # Options: 'arithmetic', 'identity', 'bzip2'
|
type: identity
|
||||||
|
|
||||||
data:
|
data:
|
||||||
url: https://content.neuralink.com/compression-challenge/data.zip # URL to download the dataset.
|
url: https://content.neuralink.com/compression-challenge/data.zip
|
||||||
directory: data # Directory to extract and store the dataset.
|
directory: data
|
||||||
split_ratio: 0.8 # Ratio to split the data into train and test sets.
|
split_ratio: 0.8
|
||||||
cut_length: null # Optional length to cut sequences to.
|
cut_length: null
|
||||||
|
|
||||||
profiler:
|
profiler:
|
||||||
enable: false
|
enable: false
|
||||||
|
|
||||||
training:
|
training:
|
||||||
eval_freq: -1 # 8 # Frequency of evaluation during training (in epochs).
|
eval_freq: -1 # 8
|
||||||
save_path: models # Directory to save the best model and encoder.
|
save_path: models
|
||||||
|
peer_gradients: True
|
||||||
|
|
||||||
|
middle_out:
|
||||||
|
residual: False
|
||||||
---
|
---
|
||||||
name: FC
|
name: FC
|
||||||
import: $
|
import: $
|
||||||
|
|
||||||
latent_projector:
|
latent_projector:
|
||||||
type: fc # Options: 'fc', 'rnn'
|
type: fc
|
||||||
input_size: 1953 # =0.1s 19531 # =1s Input size for the Latent Projector (length of snippets).
|
input_size: 1953
|
||||||
latent_size: 4 # Size of the latent representation before message passing.
|
latent_size: 4
|
||||||
layer_shapes: [32, 8] # List of layer sizes for the latent projector (if type is 'fc').
|
layer_shapes: [32, 8]
|
||||||
activations: ['ReLU', 'ReLU'] # Activation functions for the latent projector layers (if type is 'fc').
|
activations: ['ReLU', 'ReLU']
|
||||||
#rnn_hidden_size: 4 # Hidden size for the RNN projector (if type is 'rnn').
|
|
||||||
#rnn_num_layers: 1 # Number of layers for the RNN projector (if type is 'rnn').
|
|
||||||
|
|
||||||
middle_out:
|
middle_out:
|
||||||
region_latent_size: 4 # Size of the latent representation after message passing.
|
region_latent_size: 4
|
||||||
num_peers: 3 # Number of most correlated peers to consider.
|
num_peers: 3
|
||||||
|
|
||||||
predictor:
|
predictor:
|
||||||
layer_shapes: [3] # List of layer sizes for the predictor.
|
layer_shapes: [3]
|
||||||
activations: ['ReLU'] # Activation functions for the predictor layers.
|
activations: ['ReLU']
|
||||||
|
|
||||||
training:
|
training:
|
||||||
epochs: 1024 # Number of training epochs.
|
epochs: 1024
|
||||||
batch_size: 32 # Batch size for training.
|
batch_size: 32
|
||||||
num_batches: 1 # Batches per epoch
|
num_batches: 1
|
||||||
learning_rate: 0.01 # Learning rate for the optimizer.
|
learning_rate: 0.01
|
||||||
---
|
---
|
||||||
name: FC6
|
name: FC6
|
||||||
import: $
|
import: $
|
||||||
|
|
||||||
latent_projector:
|
latent_projector:
|
||||||
type: fc # Options: 'fc', 'rnn'
|
type: fc
|
||||||
input_size: 195 # =0.1s 19531 # =1s Input size for the Latent Projector (length of snippets).
|
input_size: 195
|
||||||
latent_size: 4 # Size of the latent representation before message passing.
|
latent_size: 4
|
||||||
layer_shapes: [16] # List of layer sizes for the latent projector (if type is 'fc').
|
layer_shapes: [16]
|
||||||
activations: ['ReLU'] # Activation functions for the latent projector layers (if type is 'fc').
|
activations: ['ReLU']
|
||||||
#rnn_hidden_size: 4 # Hidden size for the RNN projector (if type is 'rnn').
|
|
||||||
#rnn_num_layers: 1 # Number of layers for the RNN projector (if type is 'rnn').
|
|
||||||
|
|
||||||
middle_out:
|
middle_out:
|
||||||
region_latent_size: 8 # Size of the latent representation after message passing.
|
region_latent_size: 8
|
||||||
num_peers: 3 # Number of most correlated peers to consider.
|
num_peers: 3
|
||||||
|
|
||||||
predictor:
|
predictor:
|
||||||
layer_shapes: [3] # List of layer sizes for the predictor.
|
layer_shapes: [3]
|
||||||
activations: ['ReLU'] # Activation functions for the predictor layers.
|
activations: ['ReLU']
|
||||||
|
|
||||||
training:
|
training:
|
||||||
epochs: 1024 # Number of training epochs.
|
epochs: 1024
|
||||||
batch_size: 16 # Batch size for training.
|
batch_size: 16
|
||||||
num_batches: 1 # Batches per epoch
|
num_batches: 1
|
||||||
learning_rate: 0.01 # Learning rate for the optimizer.
|
learning_rate: 0.01
|
||||||
---
|
---
|
||||||
name: RNN
|
name: RNN
|
||||||
import: $
|
import: $
|
||||||
|
|
||||||
latent_projector:
|
latent_projector:
|
||||||
type: rnn # Options: 'fc', 'rnn', 'fourier'
|
type: rnn
|
||||||
input_size: 1953 # =0.1s 19531 # =1s Input size for the Latent Projector (length of snippets).
|
input_size: 1953
|
||||||
latent_size: 4 # Size of the latent representation before message passing.
|
latent_size: 4
|
||||||
#layer_shapes: [32, 8] # List of layer sizes for the latent projector (if type is 'fc' or 'fourier').
|
rnn_hidden_size: 3
|
||||||
#activations: ['ReLU', 'ReLU'] # Activation functions for the latent projector layers (if type is 'fc' or 'fourier').
|
rnn_num_layers: 2
|
||||||
rnn_hidden_size: 3 # Hidden size for the RNN projector (if type is 'rnn').
|
|
||||||
rnn_num_layers: 2 # Number of layers for the RNN projector (if type is 'rnn').
|
|
||||||
#num_frequencies: 16 # Number of frquency bins for the fourier decomp (if type is 'fourier').
|
|
||||||
#pass_raw_len: null # How many last samples to give raw to the net in addition to freqs (null = all) (if type is 'fourier').
|
|
||||||
|
|
||||||
middle_out:
|
middle_out:
|
||||||
region_latent_size: 4 # Size of the latent representation after message passing.
|
region_latent_size: 4
|
||||||
num_peers: 3 # Number of most correlated peers to consider.
|
num_peers: 3
|
||||||
|
|
||||||
predictor:
|
predictor:
|
||||||
layer_shapes: [3] # List of layer sizes for the predictor.
|
layer_shapes: [3]
|
||||||
activations: ['ReLU'] # Activation functions for the predictor layers.
|
activations: ['ReLU']
|
||||||
|
|
||||||
training:
|
training:
|
||||||
epochs: 1024 # Number of training epochs.
|
epochs: 1024
|
||||||
batch_size: 64 # Batch size for training.
|
batch_size: 64
|
||||||
num_batches: 2 # Batches per epoch
|
num_batches: 2
|
||||||
learning_rate: 0.01 # Learning rate for the optimizer.
|
learning_rate: 0.01
|
||||||
|
Loading…
Reference in New Issue
Block a user