Fixed bugs
This commit is contained in:
parent
97de63e946
commit
bc783b9888
17
config.yaml
17
config.yaml
@ -45,22 +45,23 @@ latent_projector:
|
||||
type: rnn # Options: 'fc', 'rnn'
|
||||
input_size: 19531 # =1s Input size for the Latent Projector (length of snippets).
|
||||
latent_size: 8 # Size of the latent representation before message passing.
|
||||
layer_shapes: [256, 32] # List of layer sizes for the latent projector (if type is 'fc').
|
||||
activations: ['relu', 'relu'] # Activation functions for the latent projector layers (if type is 'fc').
|
||||
rnn_hidden_size: 16 # Hidden size for the RNN projector (if type is 'rnn').
|
||||
rnn_num_layers: 2 # Number of layers for the RNN projector (if type is 'rnn').
|
||||
#layer_shapes: [256, 32] # List of layer sizes for the latent projector (if type is 'fc').
|
||||
#activations: ['ReLU', 'ReLU'] # Activation functions for the latent projector layers (if type is 'fc').
|
||||
rnn_hidden_size: 12 # Hidden size for the RNN projector (if type is 'rnn').
|
||||
rnn_num_layers: 1 # Number of layers for the RNN projector (if type is 'rnn').
|
||||
|
||||
middle_out:
|
||||
output_size: 8 # Size of the latent representation after message passing.
|
||||
num_peers: 8 # Number of most correlated peers to consider.
|
||||
num_peers: 3 # Number of most correlated peers to consider.
|
||||
|
||||
predictor:
|
||||
layer_shapes: [8, 4] # List of layer sizes for the predictor.
|
||||
activations: ['relu', 'none'] # Activation functions for the predictor layers.
|
||||
activations: ['ReLU', 'None'] # Activation functions for the predictor layers.
|
||||
|
||||
training:
|
||||
epochs: 128 # Number of training epochs.
|
||||
batch_size: 8 # Batch size for training.
|
||||
batch_size: 64 # Batch size for training.
|
||||
num_batches: 16 # Batches per epoch
|
||||
learning_rate: 0.001 # Learning rate for the optimizer.
|
||||
eval_freq: 8 # Frequency of evaluation during training (in epochs).
|
||||
save_path: models # Directory to save the best model and encoder.
|
||||
@ -76,7 +77,7 @@ data:
|
||||
url: https://content.neuralink.com/compression-challenge/data.zip # URL to download the dataset.
|
||||
directory: data # Directory to extract and store the dataset.
|
||||
split_ratio: 0.8 # Ratio to split the data into train and test sets.
|
||||
cut_length: None # Optional length to cut sequences to.
|
||||
cut_length: null # Optional length to cut sequences to.
|
||||
|
||||
profiler:
|
||||
enable: false
|
@ -21,18 +21,20 @@ def load_all_wavs(data_dir, cut_length=None):
|
||||
all_data = []
|
||||
for file_path in wav_files:
|
||||
_, data = load_wav(file_path)
|
||||
if cut_length:
|
||||
if cut_length is not None:
|
||||
print(cut_length)
|
||||
data = data[:cut_length]
|
||||
all_data.append(data)
|
||||
return all_data
|
||||
|
||||
def compute_correlation_matrix(data):
|
||||
num_leads = len(data)
|
||||
corr_matrix = np.zeros((num_leads, num_leads))
|
||||
for i in range(num_leads):
|
||||
for j in range(num_leads):
|
||||
if i != j:
|
||||
corr_matrix[i, j] = np.corrcoef(data[i], data[j])[0, 1]
|
||||
min_length = min(len(d) for d in data)
|
||||
|
||||
# Trim all leads to the minimum length
|
||||
trimmed_data = [d[:min_length] for d in data]
|
||||
|
||||
corr_matrix = np.corrcoef(trimmed_data)
|
||||
return corr_matrix
|
||||
|
||||
def split_data_by_time(data, split_ratio=0.5):
|
||||
|
242
main.py
242
main.py
@ -2,21 +2,24 @@ import os
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
import random
|
||||
from utils import download_and_extract_data, load_all_wavs, split_data_by_time, compute_correlation_matrix, visualize_prediction, plot_delta_distribution
|
||||
import random, math
|
||||
from utils import visualize_prediction, plot_delta_distribution
|
||||
from data_processing import download_and_extract_data, load_all_wavs, split_data_by_time, compute_correlation_matrix
|
||||
from models import LatentProjector, LatentRNNProjector, MiddleOut, Predictor
|
||||
from bitstream import IdentityEncoder, ArithmeticEncoder, Bzip2Encoder
|
||||
import wandb
|
||||
from pycallgraph import PyCallGraph
|
||||
from pycallgraph.output import GraphvizOutput
|
||||
import slate
|
||||
from pycallgraph2 import PyCallGraph
|
||||
from pycallgraph2.output import GraphvizOutput
|
||||
from slate import Slate, Slate_Runner
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
class SpikeRunner:
|
||||
def __init__(self, config):
|
||||
self.config = config
|
||||
self.name = slate.consume(config, 'name', default='Test')
|
||||
class SpikeRunner(Slate_Runner):
|
||||
def setup(self, name):
|
||||
print("Setup SpikeRunner")
|
||||
|
||||
self.name = name
|
||||
slate, config = self.slate, self.config
|
||||
|
||||
training_config = slate.consume(config, 'training', expand=True)
|
||||
data_config = slate.consume(config, 'data', expand=True)
|
||||
@ -30,22 +33,36 @@ class SpikeRunner:
|
||||
self.train_data, self.test_data = split_data_by_time(all_data, split_ratio)
|
||||
|
||||
# Compute correlation matrix
|
||||
print("Computing correlation matrix")
|
||||
self.correlation_matrix = compute_correlation_matrix(self.train_data)
|
||||
|
||||
# Number of peers for message passing
|
||||
self.num_peers = slate.consume(config, 'middle_out.num_peers')
|
||||
|
||||
# Precompute sorted indices for the top num_peers correlated leads
|
||||
print("Precomputing sorted peer indices")
|
||||
self.sorted_peer_indices = np.argsort(-self.correlation_matrix, axis=1)[:, :self.num_peers]
|
||||
|
||||
# Model setup
|
||||
print("Setting up models")
|
||||
latent_projector_type = slate.consume(config, 'latent_projector.type', default='fc')
|
||||
latent_size = slate.consume(config, 'latent_projector.latent_size')
|
||||
input_size = slate.consume(config, 'latent_projector.input_size')
|
||||
output_size = slate.consume(config, 'middle_out.output_size')
|
||||
|
||||
if latent_projector_type == 'fc':
|
||||
self.projector = LatentProjector(**slate.consume(config, 'latent_projector', expand=True)).to(device)
|
||||
self.projector = LatentProjector(latent_size=latent_size, input_size=input_size, **slate.consume(config, 'latent_projector', expand=True)).to(device)
|
||||
elif latent_projector_type == 'rnn':
|
||||
self.projector = LatentRNNProjector(**slate.consume(config, 'latent_projector', expand=True)).to(device)
|
||||
self.projector = LatentRNNProjector(latent_size=latent_size, input_size=input_size, **slate.consume(config, 'latent_projector', expand=True)).to(device)
|
||||
|
||||
self.middle_out = MiddleOut(**slate.consume(config, 'middle_out', expand=True)).to(device)
|
||||
self.predictor = Predictor(**slate.consume(config, 'predictor', expand=True)).to(device)
|
||||
self.middle_out = MiddleOut(latent_size=latent_size, output_size=output_size, num_peers=self.num_peers, **slate.consume(config, 'middle_out', expand=True)).to(device)
|
||||
self.predictor = Predictor(output_size=output_size, **slate.consume(config, 'predictor', expand=True)).to(device)
|
||||
|
||||
# Training parameters
|
||||
self.input_size = input_size
|
||||
self.epochs = slate.consume(training_config, 'epochs')
|
||||
self.batch_size = slate.consume(training_config, 'batch_size')
|
||||
self.num_batches = slate.consume(training_config, 'num_batches')
|
||||
self.learning_rate = slate.consume(training_config, 'learning_rate')
|
||||
self.eval_freq = slate.consume(training_config, 'eval_freq')
|
||||
self.save_path = slate.consume(training_config, 'save_path')
|
||||
@ -65,6 +82,7 @@ class SpikeRunner:
|
||||
# Optimizer
|
||||
self.optimizer = torch.optim.Adam(list(self.projector.parameters()) + list(self.middle_out.parameters()) + list(self.predictor.parameters()), lr=self.learning_rate)
|
||||
self.criterion = torch.nn.MSELoss()
|
||||
print("SpikeRunner initialization complete")
|
||||
|
||||
def run(self, run, forceNoProfile=False):
|
||||
if self.slate.consume(self.config, 'profiler.enable', False) and not forceNoProfile:
|
||||
@ -77,58 +95,88 @@ class SpikeRunner:
|
||||
self.train_model()
|
||||
|
||||
def train_model(self):
|
||||
max_length = max([len(seq) for seq in self.train_data])
|
||||
print(f"Max sequence length: {max_length}")
|
||||
|
||||
min_length = min([len(seq) for seq in self.train_data])
|
||||
|
||||
best_test_score = float('inf')
|
||||
|
||||
for epoch in range(self.epochs):
|
||||
total_loss = 0
|
||||
random.shuffle(self.train_data)
|
||||
for i in range(0, len(self.train_data[0]) - self.input_size, self.input_size):
|
||||
batch_data = np.array([lead[i:i+self.input_size] for lead in self.train_data])
|
||||
inputs = torch.tensor(batch_data, dtype=torch.float32).unsqueeze(2).to(device)
|
||||
|
||||
batch_loss = 0
|
||||
for lead_idx in range(len(inputs)):
|
||||
lead_data = inputs[lead_idx]
|
||||
latents = self.projector(lead_data)
|
||||
|
||||
for t in range(latents.shape[0]):
|
||||
my_latent = latents[t]
|
||||
|
||||
peer_latents = []
|
||||
peer_correlations = []
|
||||
for peer_idx in np.argsort(self.correlation_matrix[lead_idx])[-self.num_peers:]:
|
||||
peer_latent = latents[t]
|
||||
peer_correlation = torch.tensor([self.correlation_matrix[lead_idx, peer_idx]], dtype=torch.float32).to(device)
|
||||
peer_latents.append(peer_latent)
|
||||
peer_correlations.append(peer_correlation)
|
||||
|
||||
peer_latents = torch.stack(peer_latents).to(device)
|
||||
peer_correlations = torch.stack(peer_correlations).to(device)
|
||||
new_latent = self.middle_out(my_latent, peer_latents, peer_correlations)
|
||||
prediction = self.predictor(new_latent)
|
||||
target = lead_data[t+1] if t < latents.shape[0] - 1 else lead_data[t]
|
||||
|
||||
loss = self.criterion(prediction, target)
|
||||
batch_loss += loss.item()
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
|
||||
total_loss += batch_loss
|
||||
|
||||
for batch_num in range(self.num_batches):
|
||||
|
||||
# Create indices for training data and shuffle them
|
||||
indices = list(range(len(self.train_data)))
|
||||
random.shuffle(indices)
|
||||
|
||||
stacked_segments = []
|
||||
peer_correlations = []
|
||||
targets = []
|
||||
|
||||
for idx in indices[:self.batch_size]:
|
||||
lead_data = self.train_data[idx][:min_length]
|
||||
|
||||
# Slide a window over the data with overlap
|
||||
stride = max(1, self.input_size // 8) # Ensuring stride is at least 1
|
||||
for i in range(0, len(lead_data) - self.input_size-1, stride):
|
||||
lead_segment = lead_data[i:i + self.input_size]
|
||||
inputs = torch.tensor(lead_segment, dtype=torch.float32).to(device)
|
||||
|
||||
# Collect the segments for the current lead and its peers
|
||||
peer_segments = []
|
||||
for peer_idx in self.sorted_peer_indices[idx]:
|
||||
peer_segment = self.train_data[peer_idx][i:i + self.input_size][:min_length]
|
||||
peer_segments.append(torch.tensor(peer_segment, dtype=torch.float32).to(device))
|
||||
peer_correlation = torch.tensor([self.correlation_matrix[idx, peer_idx] for peer_idx in self.sorted_peer_indices[idx]], dtype=torch.float32).to(device) # Shape: (num_peers)
|
||||
peer_correlations.append(peer_correlation)
|
||||
|
||||
# Stack the segments to form the batch
|
||||
stacked_segment = torch.stack([inputs] + peer_segments).to(device)
|
||||
stacked_segments.append(stacked_segment)
|
||||
target = lead_data[i + self.input_size + 1]
|
||||
targets.append(target)
|
||||
|
||||
# Pass the batch through the projector
|
||||
latents = self.projector(torch.stack(stacked_segments))
|
||||
|
||||
my_latent = latents[:, 0, :]
|
||||
peer_latents = latents[:, 1:, :]
|
||||
|
||||
# Pass through MiddleOut
|
||||
new_latent = self.middle_out(my_latent, peer_latents, torch.stack(peer_correlations))
|
||||
prediction = self.predictor(new_latent)
|
||||
|
||||
# Calculate loss and backpropagate
|
||||
loss = self.criterion(prediction, torch.tensor(targets, dtype=torch.float32).unsqueeze(-1).to(device))
|
||||
total_loss += loss.item()
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
|
||||
wandb.log({"epoch": epoch, "loss": total_loss}, step=epoch)
|
||||
print(f'Epoch {epoch+1}/{self.epochs}, Loss: {total_loss}')
|
||||
|
||||
if (epoch + 1) % self.eval_freq == 0:
|
||||
print(f'Epoch {epoch + 1}/{self.epochs}, Loss: {total_loss}')
|
||||
|
||||
if self.eval_freq != -1 and (epoch + 1) % self.eval_freq == 0:
|
||||
print(f'Starting evaluation for epoch {epoch + 1}')
|
||||
test_loss = self.evaluate_model(epoch)
|
||||
if test_loss < best_test_score:
|
||||
best_test_score = test_loss
|
||||
self.save_models(epoch)
|
||||
print(f'Evaluation complete for epoch {epoch + 1}')
|
||||
|
||||
|
||||
wandb.log({"epoch": epoch, "loss": total_loss}, step=epoch)
|
||||
print(f'Epoch {epoch + 1}/{self.epochs}, Loss: {total_loss}')
|
||||
|
||||
if (epoch + 1) % self.eval_freq == 0:
|
||||
print(f'Starting evaluation for epoch {epoch + 1}')
|
||||
test_loss = self.evaluate_model(epoch)
|
||||
if test_loss < best_test_score:
|
||||
best_test_score = test_loss
|
||||
self.save_models(epoch)
|
||||
print(f'Evaluation complete for epoch {epoch + 1}')
|
||||
|
||||
|
||||
def evaluate_model(self, epoch):
|
||||
print('Evaluating model...')
|
||||
self.projector.eval()
|
||||
self.middle_out.eval()
|
||||
self.predictor.eval()
|
||||
@ -143,59 +191,82 @@ class SpikeRunner:
|
||||
|
||||
with torch.no_grad():
|
||||
for lead_idx in range(len(self.test_data)):
|
||||
lead_data = torch.tensor(self.test_data[lead_idx], dtype=torch.float32).unsqueeze(1).to(device)
|
||||
latents = self.projector(lead_data)
|
||||
|
||||
lead_data = self.test_data[lead_idx]
|
||||
true_data = []
|
||||
predicted_data = []
|
||||
delta_data = []
|
||||
targets = []
|
||||
|
||||
for t in range(latents.shape[0]):
|
||||
my_latent = latents[t]
|
||||
min_length = min([len(seq) for seq in self.test_data])
|
||||
|
||||
peer_latents = []
|
||||
peer_correlations = []
|
||||
for peer_idx in np.argsort(self.correlation_matrix[lead_idx])[-self.num_peers:]:
|
||||
peer_latent = latents[t]
|
||||
peer_correlation = torch.tensor([self.correlation_matrix[lead_idx, peer_idx]], dtype=torch.float32).to(device)
|
||||
peer_latents.append(peer_latent)
|
||||
peer_correlations.append(peer_correlation)
|
||||
# Initialize lists to store segments and peer correlations
|
||||
stacked_segments = []
|
||||
peer_correlations = []
|
||||
|
||||
peer_latents = torch.stack(peer_latents).to(device)
|
||||
peer_correlations = torch.stack(peer_correlations).to(device)
|
||||
new_latent = self.middle_out(my_latent, peer_latents, peer_correlations)
|
||||
prediction = self.predictor(new_latent)
|
||||
target = lead_data[t+1] if t < latents.shape[0] - 1 else lead_data[t]
|
||||
for i in range(0, len(lead_data) - self.input_size-1, self.input_size // 8):
|
||||
lead_segment = lead_data[i:i + self.input_size]
|
||||
inputs = torch.tensor(lead_segment, dtype=torch.float32).to(device)
|
||||
|
||||
loss = self.criterion(prediction, target)
|
||||
total_loss += loss.item()
|
||||
# Collect peer segments and correlations
|
||||
peer_segments = []
|
||||
for peer_idx in self.sorted_peer_indices[lead_idx]:
|
||||
peer_segment = self.test_data[peer_idx][i:i + self.input_size][:min_length]
|
||||
peer_segments.append(torch.tensor(peer_segment, dtype=torch.float32).to(device))
|
||||
peer_correlation = torch.tensor([self.correlation_matrix[lead_idx, peer_idx] for peer_idx in self.sorted_peer_indices[lead_idx]], dtype=torch.float32).to(device)
|
||||
peer_correlations.append(peer_correlation)
|
||||
|
||||
true_data.append(target.cpu().numpy())
|
||||
predicted_data.append(prediction.cpu().numpy())
|
||||
delta_data.append((target - prediction).cpu().numpy())
|
||||
# Stack segments to form the batch
|
||||
stacked_segment = torch.stack([inputs] + peer_segments).to(device)
|
||||
stacked_segments.append(stacked_segment)
|
||||
target = lead_data[i + self.input_size + 1]
|
||||
targets.append(target)
|
||||
|
||||
# Pass the batch through the projector
|
||||
latents = self.projector(torch.stack(stacked_segments))
|
||||
|
||||
my_latents = latents[:, 0, :]
|
||||
peer_latents = latents[:, 1:, :]
|
||||
|
||||
# Pass through MiddleOut
|
||||
new_latents = self.middle_out(my_latents, peer_latents, torch.stack(peer_correlations))
|
||||
|
||||
# Predict using the predictor
|
||||
predictions = self.predictor(new_latents)
|
||||
|
||||
# Compute loss and store true and predicted data
|
||||
for i, segment in enumerate(stacked_segments):
|
||||
for t in range(self.input_size):
|
||||
target = torch.tensor(targets[i])
|
||||
true_data.append(target.cpu().numpy())
|
||||
predicted_data.append(predictions[i, t, :].cpu().numpy())
|
||||
delta_data.append((target - predictions[i, t, :]).cpu().numpy())
|
||||
|
||||
loss = self.criterion(predictions[i, t, :], target)
|
||||
total_loss += loss.item()
|
||||
|
||||
# Append true and predicted data for this lead sequence
|
||||
all_true.append(true_data)
|
||||
all_predicted.append(predicted_data)
|
||||
all_deltas.append(delta_data)
|
||||
|
||||
if self.full_compression:
|
||||
self.encoder.build_model(latents.cpu().numpy())
|
||||
compressed_data = self.encoder.encode(latents.cpu().numpy())
|
||||
decompressed_data = self.encoder.decode(compressed_data, len(latents))
|
||||
compression_ratio = len(latents) / len(compressed_data)
|
||||
# Bitstream encoding
|
||||
self.encoder.build_model(my_latents.cpu().numpy())
|
||||
compressed_data = self.encoder.encode(my_latents.cpu().numpy())
|
||||
decompressed_data = self.encoder.decode(compressed_data, len(my_latents))
|
||||
compression_ratio = len(my_latents) / len(compressed_data)
|
||||
compression_ratios.append(compression_ratio)
|
||||
|
||||
# Check if decompressed data matches the original data
|
||||
if np.allclose(latents.cpu().numpy(), decompressed_data, atol=1e-5):
|
||||
if np.allclose(my_latents.cpu().numpy(), decompressed_data, atol=1e-5):
|
||||
exact_matches += 1
|
||||
total_sequences += 1
|
||||
|
||||
visualize_prediction(np.array(true_data), np.array(predicted_data), np.array(delta_data), sample_rate=1, epoch=epoch)
|
||||
|
||||
avg_loss = total_loss / len(self.test_data)
|
||||
print(f'Epoch {epoch+1}, Evaluation Loss: {avg_loss}')
|
||||
wandb.log({"evaluation_loss": avg_loss}, step=epoch)
|
||||
|
||||
# Visualize delta distribution
|
||||
delta_plot_path = plot_delta_distribution(np.concatenate(all_deltas), epoch)
|
||||
wandb.log({"delta_distribution": wandb.Image(delta_plot_path)}, step=epoch)
|
||||
|
||||
@ -207,14 +278,19 @@ class SpikeRunner:
|
||||
wandb.log({"average_compression_ratio": avg_compression_ratio}, step=epoch)
|
||||
wandb.log({"exact_match_percentage": exact_match_percentage}, step=epoch)
|
||||
|
||||
print('Evaluation done for this epoch.')
|
||||
return avg_loss
|
||||
|
||||
|
||||
def save_models(self, epoch):
|
||||
print('Saving models...')
|
||||
torch.save(self.projector.state_dict(), os.path.join(self.save_path, f"best_projector_epoch_{epoch+1}.pt"))
|
||||
torch.save(self.middle_out.state_dict(), os.path.join(self.save_path, f"best_middle_out_epoch_{epoch+1}.pt"))
|
||||
torch.save(self.predictor.state_dict(), os.path.join(self.save_path, f"best_predictor_epoch_{epoch+1}.pt"))
|
||||
print(f"New high score! Models saved at epoch {epoch+1}.")
|
||||
|
||||
if __name__ == '__main__':
|
||||
print('Initializing...')
|
||||
slate = Slate({'spikey': SpikeRunner})
|
||||
slate.from_args()
|
||||
print('Done.')
|
@ -49,8 +49,9 @@ class MiddleOut(nn.Module):
|
||||
|
||||
def forward(self, my_latent, peer_latents, peer_correlations):
|
||||
new_latents = []
|
||||
for peer_latent, correlation in zip(peer_latents, peer_correlations):
|
||||
combined_input = torch.cat((my_latent, peer_latent, correlation), dim=-1)
|
||||
for p in range(peer_latents.shape[-2]):
|
||||
peer_latent, correlation = peer_latents[:, p, :], peer_correlations[:, p]
|
||||
combined_input = torch.cat((my_latent, peer_latent, correlation.unsqueeze(1)), dim=-1)
|
||||
new_latent = self.fc(combined_input)
|
||||
new_latents.append(new_latent)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user