diff --git a/bitstream.py b/bitstream.py index a57fdde..3aa209d 100644 --- a/bitstream.py +++ b/bitstream.py @@ -3,6 +3,7 @@ import heapq from abc import ABC, abstractmethod from arithmetic_compressor import AECompressor from arithmetic_compressor.models import StaticModel +import numpy as np class BaseEncoder(ABC): @abstractmethod @@ -86,10 +87,8 @@ class BinomialHuffmanEncoder(BaseEncoder): return codebook def build_model(self, data): - # Number of possible 10-bit integers (0 to 1023) - num_symbols = 1024 + num_symbols = 2**10 - # Mean and standard deviation for a binomial distribution centered around 0 mean = (num_symbols - 1) / 2 std_dev = math.sqrt(num_symbols / 4) @@ -119,3 +118,34 @@ class BinomialHuffmanEncoder(BaseEncoder): # The root of the Huffman tree self.root = heapq.heappop(heap) self.codebook = self._generate_codes(self.root) + +class RiceEncoder(BaseEncoder): + def encode(self, data): + data = np.array(data).astype(int) + q = data // self.m + r = data % self.m + + encoded_data = [] + for qi, ri in zip(q, r): + encoded_data.append('1' * qi + '0' + format(ri, f'0{self.k}b')) + + return ''.join(encoded_data) + + def decode(self, encoded_data): + decoded_output = [] + i = 0 + while i < len(encoded_data): + q = 0 + while encoded_data[i] == '1': + q += 1 + i += 1 + i += 1 # skip the '0' + r = int(encoded_data[i:i + self.k], 2) + i += self.k + decoded_output.append(q * self.m + r) + + return np.array(decoded_output) + + def build_model(self, data, k=3): + self.k = k + self.m = 1 << k