2nd commit
This commit is contained in:
parent
0c5f888d75
commit
e0f51b5ee0
34
README.md
34
README.md
@ -18,40 +18,6 @@ pip install -r requirements.txt
|
||||
|
||||
## Usage
|
||||
|
||||
### Configuration
|
||||
|
||||
The configuration for training and evaluation is specified in a YAML file. Below is an example configuration:
|
||||
|
||||
```yaml
|
||||
name: Test
|
||||
|
||||
preprocessing:
|
||||
use_delta_encoding: true # Whether to use delta encoding.
|
||||
|
||||
predictor:
|
||||
type: lstm # Options: 'lstm', 'fixed_input_nn'
|
||||
input_size: 1 # Input size for the LSTM predictor.
|
||||
hidden_size: 128 # Hidden size for the LSTM or Fixed Input NN predictor.
|
||||
num_layers: 2 # Number of layers for the LSTM predictor.
|
||||
fixed_input_size: 10 # Input size for the Fixed Input NN predictor. Only used if type is 'fixed_input_nn'.
|
||||
|
||||
training:
|
||||
epochs: 10 # Number of training epochs.
|
||||
batch_size: 32 # Batch size for training.
|
||||
learning_rate: 0.001 # Learning rate for the optimizer.
|
||||
eval_freq: 2 # Frequency of evaluation during training (in epochs).
|
||||
save_path: models # Directory to save the best model and encoder.
|
||||
num_points: 1000 # Number of data points to visualize.
|
||||
|
||||
bitstream_encoding:
|
||||
type: arithmetic # Use arithmetic encoding.
|
||||
|
||||
data:
|
||||
url: https://content.neuralink.com/compression-challenge/data.zip # URL to download the dataset.
|
||||
directory: data # Directory to extract and store the dataset.
|
||||
split_ratio: 0.8 # Ratio to split the data into train and test sets.
|
||||
```
|
||||
|
||||
### Running the Code
|
||||
|
||||
To train the model and compress/decompress WAV files, use the CLI provided:
|
||||
|
23
bitstream.py
23
bitstream.py
@ -1,3 +1,4 @@
|
||||
import bz2
|
||||
from abc import ABC, abstractmethod
|
||||
from arithmetic_compressor import AECompressor
|
||||
from arithmetic_compressor.models import StaticModel
|
||||
@ -15,6 +16,16 @@ class BaseEncoder(ABC):
|
||||
def build_model(self, data):
|
||||
pass
|
||||
|
||||
class IdentityEncoder(BaseEncoder):
|
||||
def encode(self, data):
|
||||
return data
|
||||
|
||||
def decode(self, encoded_data, num_symbols):
|
||||
return encoded_data
|
||||
|
||||
def build_model(self, data):
|
||||
pass
|
||||
|
||||
class ArithmeticEncoder(BaseEncoder):
|
||||
def encode(self, data):
|
||||
if not hasattr(self, 'model'):
|
||||
@ -29,7 +40,19 @@ class ArithmeticEncoder(BaseEncoder):
|
||||
return decoded_data
|
||||
|
||||
def build_model(self, data):
|
||||
# Convert data to list of tuples
|
||||
data = [tuple(d) for d in data]
|
||||
symbol_counts = {symbol: data.count(symbol) for symbol in set(data)}
|
||||
total_symbols = sum(symbol_counts.values())
|
||||
probabilities = {symbol: count / total_symbols for symbol, count in symbol_counts.items()}
|
||||
self.model = StaticModel(probabilities)
|
||||
|
||||
class Bzip2Encoder(BaseEncoder):
|
||||
def encode(self, data):
|
||||
return bz2.compress(bytearray(data))
|
||||
|
||||
def decode(self, encoded_data, num_symbols):
|
||||
return list(bz2.decompress(encoded_data))
|
||||
|
||||
def build_model(self, data):
|
||||
pass
|
||||
|
18
config.yaml
18
config.yaml
@ -30,38 +30,42 @@ wandb:
|
||||
group: '{config[name]}'
|
||||
job_type: '{delta_desc}'
|
||||
name: '{job_id}_{task_id}:{run_id}:{rand}={config[name]}_{delta_desc}'
|
||||
tags:
|
||||
- '{config[env][name]}'
|
||||
- '{config[algo][name]}'
|
||||
#tags:
|
||||
# - '{config[env][name]}'
|
||||
# - '{config[algo][name]}'
|
||||
sync_tensorboard: False
|
||||
monitor_gym: False
|
||||
save_code: False
|
||||
|
||||
---
|
||||
name: Test
|
||||
import: $
|
||||
|
||||
preprocessing:
|
||||
use_delta_encoding: true # Whether to use delta encoding.
|
||||
use_delta_encoding: false # Whether to use delta encoding.
|
||||
|
||||
predictor:
|
||||
type: lstm # Options: 'lstm', 'fixed_input_nn'
|
||||
input_size: 1 # Input size for the LSTM predictor.
|
||||
hidden_size: 128 # Hidden size for the LSTM or Fixed Input NN predictor.
|
||||
hidden_size: 16 # Hidden size for the LSTM or Fixed Input NN predictor.
|
||||
num_layers: 2 # Number of layers for the LSTM predictor.
|
||||
fixed_input_size: 10 # Input size for the Fixed Input NN predictor. Only used if type is 'fixed_input_nn'.
|
||||
|
||||
training:
|
||||
epochs: 10 # Number of training epochs.
|
||||
batch_size: 32 # Batch size for training.
|
||||
batch_size: 8 # Batch size for training.
|
||||
learning_rate: 0.001 # Learning rate for the optimizer.
|
||||
eval_freq: 2 # Frequency of evaluation during training (in epochs).
|
||||
save_path: models # Directory to save the best model and encoder.
|
||||
num_points: 1000 # Number of data points to visualize
|
||||
|
||||
bitstream_encoding:
|
||||
type: arithmetic # Use arithmetic encoding.
|
||||
type: identity # Options: 'arithmetic', 'no_compression', 'bzip2'
|
||||
|
||||
data:
|
||||
url: https://content.neuralink.com/compression-challenge/data.zip # URL to download the dataset.
|
||||
directory: data # Directory to extract and store the dataset.
|
||||
split_ratio: 0.8 # Ratio to split the data into train and test sets.
|
||||
|
||||
profiler:
|
||||
enable: false
|
@ -1,8 +1,8 @@
|
||||
import os
|
||||
import numpy as np
|
||||
from scipy.io import wavfile
|
||||
import urllib.request
|
||||
import zipfile
|
||||
import os
|
||||
|
||||
def download_and_extract_data(url, data_dir):
|
||||
if not os.path.exists(data_dir):
|
||||
@ -35,7 +35,8 @@ def delta_encode(data):
|
||||
"""Apply delta encoding to the data."""
|
||||
deltas = [data[0]]
|
||||
for i in range(1, len(data)):
|
||||
deltas.append(data[i] - data[i - 1])
|
||||
delta = np.subtract(data[i], data[i - 1], dtype=np.float32) # Using numpy subtract to handle overflow
|
||||
deltas.append(delta)
|
||||
return deltas
|
||||
|
||||
def delta_decode(deltas):
|
||||
|
57
main.py
57
main.py
@ -1,9 +1,12 @@
|
||||
import yaml
|
||||
from slate import Slate, Slate_Runner
|
||||
|
||||
from pycallgraph2 import PyCallGraph
|
||||
from pycallgraph2.output import GraphvizOutput
|
||||
|
||||
from data_processing import download_and_extract_data, load_all_wavs, delta_encode
|
||||
from model import LSTMPredictor, FixedInputNNPredictor
|
||||
from train import train_model
|
||||
from bitstream import ArithmeticEncoder
|
||||
from bitstream import ArithmeticEncoder, IdentityEncoder, Bzip2Encoder
|
||||
|
||||
class SpikeRunner(Slate_Runner):
|
||||
def setup(self, name):
|
||||
@ -23,7 +26,14 @@ class SpikeRunner(Slate_Runner):
|
||||
download_and_extract_data(data_url, data_dir)
|
||||
all_data = load_all_wavs(data_dir)
|
||||
|
||||
if slate.consume(preprocessing_config, 'use_delta_encoding'):
|
||||
self.epochs = slate.consume(training_config, 'epochs')
|
||||
self.batch_size = slate.consume(training_config, 'batch_size')
|
||||
self.learning_rate = slate.consume(training_config, 'learning_rate')
|
||||
self.use_delta_encoding = slate.consume(preprocessing_config, 'use_delta_encoding')
|
||||
self.eval_freq = slate.consume(training_config, 'eval_freq')
|
||||
self.save_path = slate.consume(training_config, 'save_path', 'models')
|
||||
|
||||
if self.use_delta_encoding:
|
||||
all_data = [delta_encode(d) for d in all_data]
|
||||
|
||||
# Split data into train and test sets
|
||||
@ -35,34 +45,47 @@ class SpikeRunner(Slate_Runner):
|
||||
# Model setup
|
||||
self.model = self.get_model(predictor_config)
|
||||
self.encoder = self.get_encoder(bitstream_config)
|
||||
self.epochs = slate.consume(training_config, 'epochs')
|
||||
self.batch_size = slate.consume(training_config, 'batch_size')
|
||||
self.learning_rate = slate.consume(training_config, 'learning_rate')
|
||||
self.use_delta_encoding = slate.consume(preprocessing_config, 'use_delta_encoding')
|
||||
self.eval_freq = slate.consume(training_config, 'eval_freq')
|
||||
self.save_path = slate.consume(training_config, 'save_path', 'models')
|
||||
|
||||
def get_model(self, config):
|
||||
model_type = self.slate.consume(config, 'type')
|
||||
model_type = slate.consume(config, 'type')
|
||||
if model_type == 'lstm':
|
||||
return LSTMPredictor(
|
||||
input_size=self.slate.consume(config, 'input_size'),
|
||||
hidden_size=self.slate.consume(config, 'hidden_size'),
|
||||
num_layers=self.slate.consume(config, 'num_layers')
|
||||
input_size=slate.consume(config, 'input_size'),
|
||||
hidden_size=slate.consume(config, 'hidden_size'),
|
||||
num_layers=slate.consume(config, 'num_layers')
|
||||
)
|
||||
elif model_type == 'fixed_input_nn':
|
||||
return FixedInputNNPredictor(
|
||||
input_size=self.slate.consume(config, 'fixed_input_size'),
|
||||
hidden_size=self.slate.consume(config, 'hidden_size')
|
||||
input_size=slate.consume(config, 'fixed_input_size'),
|
||||
hidden_size=slate.consume(config, 'hidden_size')
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown model type: {model_type}")
|
||||
|
||||
def get_encoder(self, config):
|
||||
return ArithmeticEncoder()
|
||||
encoder_type = slate.consume(config, 'type')
|
||||
if encoder_type == 'arithmetic':
|
||||
return ArithmeticEncoder()
|
||||
elif encoder_type == 'identity':
|
||||
return IdentityEncoder()
|
||||
elif encoder_type == 'bzip2':
|
||||
return Bzip2Encoder()
|
||||
else:
|
||||
raise ValueError(f"Unknown encoder type: {encoder_type}")
|
||||
|
||||
def run(self, run, forceNoProfile=False):
|
||||
train_model(self.model, self.train_data, self.test_data, self.epochs, self.batch_size, self.learning_rate, self.use_delta_encoding, self.encoder, self.eval_freq, self.save_path)
|
||||
if self.slate.consume(self.config, 'profiler.enable', False) and not forceNoProfile:
|
||||
print('{PROFILER RUNNING}')
|
||||
with PyCallGraph(output=GraphvizOutput(output_file=f'./profiler/{self.name}.png')):
|
||||
self.run(run, forceNoProfile=True)
|
||||
print('{PROFILER DONE}')
|
||||
return
|
||||
|
||||
train_model(
|
||||
self.model, self.train_data, self.test_data,
|
||||
self.epochs, self.batch_size, self.learning_rate,
|
||||
self.use_delta_encoding, self.encoder, self.eval_freq, self.save_path
|
||||
)
|
||||
|
||||
if __name__ == '__main__':
|
||||
slate = Slate({'spikey': SpikeRunner})
|
||||
|
35
model.py
35
model.py
@ -2,9 +2,9 @@ import torch
|
||||
import torch.nn as nn
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
class BaseModel(ABC, nn.Module):
|
||||
class BaseModel(nn.Module, ABC):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
super(BaseModel, self).__init__()
|
||||
|
||||
@abstractmethod
|
||||
def forward(self, x):
|
||||
@ -23,12 +23,10 @@ class LSTMPredictor(BaseModel):
|
||||
super(LSTMPredictor, self).__init__()
|
||||
self.rnn = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
|
||||
self.fc = nn.Linear(hidden_size, 1)
|
||||
self.hidden_size = hidden_size
|
||||
self.num_layers = num_layers
|
||||
|
||||
def forward(self, x):
|
||||
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
|
||||
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
|
||||
h0 = torch.zeros(self.rnn.num_layers, x.size(0), self.rnn.hidden_size).to(x.device)
|
||||
c0 = torch.zeros(self.rnn.num_layers, x.size(0), self.rnn.hidden_size).to(x.device)
|
||||
out, _ = self.rnn(x, (h0, c0))
|
||||
out = self.fc(out)
|
||||
return out
|
||||
@ -39,8 +37,10 @@ class LSTMPredictor(BaseModel):
|
||||
|
||||
with torch.no_grad():
|
||||
for i in range(len(data) - 1):
|
||||
context = torch.tensor(data[max(0, i - self.hidden_size):i]).view(1, -1, 1).float()
|
||||
prediction = self.forward(context).item()
|
||||
context = torch.tensor(data[max(0, i - self.rnn.hidden_size):i], dtype=torch.float32).unsqueeze(0).unsqueeze(2).to(next(self.parameters()).device)
|
||||
if context.shape[1] == 0:
|
||||
context = torch.zeros((1, 1, 1)).to(next(self.parameters()).device)
|
||||
prediction = self.forward(context).cpu().numpy()[0][0]
|
||||
delta = data[i] - prediction
|
||||
encoded_data.append(delta)
|
||||
|
||||
@ -52,8 +52,10 @@ class LSTMPredictor(BaseModel):
|
||||
|
||||
with torch.no_grad():
|
||||
for i in range(len(encoded_data)):
|
||||
context = torch.tensor(decoded_data[max(0, i - self.hidden_size):i]).view(1, -1, 1).float()
|
||||
prediction = self.forward(context).item()
|
||||
context = torch.tensor(decoded_data[max(0, i - self.rnn.hidden_size):i], dtype=torch.float32).unsqueeze(0).unsqueeze(2).to(next(self.parameters()).device)
|
||||
if context.shape[1] == 0:
|
||||
context = torch.zeros((1, 1, 1)).to(next(self.parameters()).device)
|
||||
prediction = self.forward(context).cpu().numpy()[0][0]
|
||||
decoded_data.append(prediction + encoded_data[i])
|
||||
|
||||
return decoded_data
|
||||
@ -64,7 +66,6 @@ class FixedInputNNPredictor(BaseModel):
|
||||
self.fc1 = nn.Linear(input_size, hidden_size)
|
||||
self.relu = nn.ReLU()
|
||||
self.fc2 = nn.Linear(hidden_size, 1)
|
||||
self.input_size = input_size
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
@ -77,10 +78,10 @@ class FixedInputNNPredictor(BaseModel):
|
||||
encoded_data = []
|
||||
|
||||
with torch.no_grad():
|
||||
for i in range(len(data) - self.input_size):
|
||||
context = torch.tensor(data[i:i + self.input_size]).view(1, -1).float()
|
||||
prediction = self.forward(context).item()
|
||||
delta = data[i + self.input_size] - prediction
|
||||
for i in range(len(data) - self.fc1.in_features):
|
||||
context = torch.tensor(data[i:i + self.fc1.in_features], dtype=torch.float32).unsqueeze(0).to(next(self.parameters()).device)
|
||||
prediction = self.forward(context).cpu().numpy()[0][0]
|
||||
delta = data[i + self.fc1.in_features] - prediction
|
||||
encoded_data.append(delta)
|
||||
|
||||
return encoded_data
|
||||
@ -91,8 +92,8 @@ class FixedInputNNPredictor(BaseModel):
|
||||
|
||||
with torch.no_grad():
|
||||
for i in range(len(encoded_data)):
|
||||
context = torch.tensor(decoded_data[max(0, i - self.input_size):i]).view(1, -1).float()
|
||||
prediction = self.forward(context).item()
|
||||
context = torch.tensor(decoded_data[max(0, i - self.fc1.in_features):i], dtype=torch.float32).unsqueeze(0).to(next(self.parameters()).device)
|
||||
prediction = self.forward(context).cpu().numpy()[0][0]
|
||||
decoded_data.append(prediction + encoded_data[i])
|
||||
|
||||
return decoded_data
|
||||
|
@ -3,4 +3,5 @@ numpy
|
||||
scipy
|
||||
matplotlib
|
||||
wandb
|
||||
pyyaml
|
||||
pyyaml
|
||||
arithmetic_compressor
|
||||
|
32
train.py
32
train.py
@ -10,17 +10,17 @@ from data_processing import delta_encode, delta_decode, save_wav
|
||||
from utils import visualize_prediction, plot_delta_distribution
|
||||
from bitstream import ArithmeticEncoder
|
||||
|
||||
def evaluate_model(model, data, use_delta_encoding, encoder, sample_rate=19531, epoch=0, num_points=None):
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
def evaluate_model(model, data, use_delta_encoding, encoder, sample_rate=19531, epoch=0):
|
||||
compression_ratios = []
|
||||
identical_count = 0
|
||||
all_deltas = []
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
model.eval()
|
||||
for file_data in data:
|
||||
file_data = torch.tensor(file_data, dtype=torch.float32).unsqueeze(1).to(device)
|
||||
encoded_data = model(file_data).squeeze(1).cpu().detach().numpy().tolist()
|
||||
encoded_data = model.encode(file_data.squeeze(1).cpu().numpy())
|
||||
encoder.build_model(encoded_data)
|
||||
compressed_data = encoder.encode(encoded_data)
|
||||
decompressed_data = encoder.decode(compressed_data, len(encoded_data))
|
||||
@ -36,14 +36,14 @@ def evaluate_model(model, data, use_delta_encoding, encoder, sample_rate=19531,
|
||||
compression_ratios.append(compression_ratio)
|
||||
|
||||
# Compute and collect deltas
|
||||
predicted_data = model(torch.tensor(encoded_data, dtype=torch.float32).unsqueeze(1).to(device)).squeeze(1).cpu().detach().numpy().tolist()
|
||||
predicted_data = model.decode(encoded_data)
|
||||
if use_delta_encoding:
|
||||
predicted_data = delta_decode(predicted_data)
|
||||
delta_data = [file_data[i].item() - predicted_data[i] for i in range(len(file_data))]
|
||||
all_deltas.extend(delta_data)
|
||||
|
||||
# Visualize prediction vs data vs error
|
||||
visualize_prediction(file_data.cpu().numpy(), predicted_data, delta_data, sample_rate, num_points)
|
||||
visualize_prediction(file_data.cpu().numpy(), predicted_data, delta_data, sample_rate)
|
||||
|
||||
identical_percentage = (identical_count / len(data)) * 100
|
||||
|
||||
@ -53,22 +53,24 @@ def evaluate_model(model, data, use_delta_encoding, encoder, sample_rate=19531,
|
||||
|
||||
return compression_ratios, identical_percentage
|
||||
|
||||
def train_model(model, train_data, test_data, epochs, batch_size, learning_rate, use_delta_encoding, encoder, eval_freq, save_path, num_points=None):
|
||||
def train_model(model, train_data, test_data, epochs, batch_size, learning_rate, use_delta_encoding, encoder, eval_freq, save_path):
|
||||
"""Train the model."""
|
||||
wandb.init(project="wav-compression")
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
||||
best_test_score = float('inf')
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
model = model.to(device)
|
||||
|
||||
for epoch in range(epochs):
|
||||
model.train()
|
||||
total_loss = 0
|
||||
random.shuffle(train_data) # Shuffle data for varied batches
|
||||
for i in range(0, len(train_data) - batch_size, batch_size):
|
||||
inputs = torch.tensor(train_data[i:i+batch_size], dtype=torch.float32).unsqueeze(2).to(device)
|
||||
targets = torch.tensor(train_data[i+1:i+batch_size+1], dtype=torch.float32).unsqueeze(2).to(device)
|
||||
batch = train_data[i:i+batch_size]
|
||||
max_len = max(len(seq) for seq in batch)
|
||||
padded_batch = np.array([np.pad(seq, (0, max_len - len(seq))) for seq in batch], dtype=np.float32)
|
||||
inputs = torch.tensor(padded_batch[:, :-1], dtype=torch.float32).unsqueeze(2).to(device)
|
||||
targets = torch.tensor(padded_batch[:, 1:], dtype=torch.float32).unsqueeze(2).to(device)
|
||||
outputs = model(inputs)
|
||||
loss = criterion(outputs, targets)
|
||||
optimizer.zero_grad()
|
||||
@ -81,8 +83,8 @@ def train_model(model, train_data, test_data, epochs, batch_size, learning_rate,
|
||||
|
||||
if (epoch + 1) % eval_freq == 0:
|
||||
# Evaluate on train and test data
|
||||
train_compression_ratios, train_identical_percentage = evaluate_model(model, train_data, use_delta_encoding, encoder, epoch=epoch, num_points=num_points)
|
||||
test_compression_ratios, test_identical_percentage = evaluate_model(model, test_data, use_delta_encoding, encoder, epoch=epoch, num_points=num_points)
|
||||
train_compression_ratios, train_identical_percentage = evaluate_model(model, train_data, use_delta_encoding, encoder, epoch=epoch)
|
||||
test_compression_ratios, test_identical_percentage = evaluate_model(model, test_data, use_delta_encoding, encoder, epoch=epoch)
|
||||
|
||||
# Log statistics
|
||||
wandb.log({
|
||||
|
Loading…
Reference in New Issue
Block a user