name: DEFAULT project: Spikey slurm: name: 'Spikey_{config[name]}' partitions: - single standard_output: ./reports/slurm/out_%A_%a.log standard_error: ./reports/slurm/err_%A_%a.log num_parallel_jobs: 50 cpus_per_task: 4 memory_per_cpu: 1000 time_limit: 1440 # in minutes ntasks: 1 venv: '.venv/bin/activate' sh_lines: - 'mkdir -p {tmp}/wandb' - 'mkdir -p {tmp}/local_pycache' - 'export PYTHONPYCACHEPREFIX={tmp}/local_pycache' runner: spikey scheduler: reps_per_version: 1 agents_per_job: 1 reps_per_agent: 1 wandb: project: '{config[project]}' group: '{config[name]}' job_type: '{delta_desc}' name: '{job_id}_{task_id}:{run_id}:{rand}={config[name]}_{delta_desc}' tags: - '{config[env][name]}' - '{config[algo][name]}' sync_tensorboard: False monitor_gym: False save_code: False --- name: Test preprocessing: use_delta_encoding: true # Whether to use delta encoding. predictor: type: lstm # Options: 'lstm', 'fixed_input_nn' input_size: 1 # Input size for the LSTM predictor. hidden_size: 128 # Hidden size for the LSTM or Fixed Input NN predictor. num_layers: 2 # Number of layers for the LSTM predictor. fixed_input_size: 10 # Input size for the Fixed Input NN predictor. Only used if type is 'fixed_input_nn'. training: epochs: 10 # Number of training epochs. batch_size: 32 # Batch size for training. learning_rate: 0.001 # Learning rate for the optimizer. eval_freq: 2 # Frequency of evaluation during training (in epochs). save_path: models # Directory to save the best model and encoder. num_points: 1000 # Number of data points to visualize bitstream_encoding: type: arithmetic # Use arithmetic encoding. data: url: https://content.neuralink.com/compression-challenge/data.zip # URL to download the dataset. directory: data # Directory to extract and store the dataset. split_ratio: 0.8 # Ratio to split the data into train and test sets.