name: EXAMPLE latent_projector: type: 'fc' # Type of latent projector: 'fc', 'rnn', 'fourier' input_size: 1953 # Input size for the Latent Projector (length of snippets). (=0.1s) latent_size: 4 # Size of the latent representation before message passing. layer_shapes: [32, 8] # List of layer sizes for the latent projector if type is 'fc' or 'fourier'. activations: ['ReLU', 'ReLU'] # Activation functions for the latent projector layers if type is 'fc' or 'fourier'. rnn_hidden_size: 4 # Hidden size for the RNN projector if type is 'rnn'. rnn_num_layers: 1 # Number of layers for the RNN projector if type is 'rnn'. pass_raw_len: 50 # Number of last samples to pass raw to the net in addition to frequencies (null = all) if type is 'fourier'. middle_out: region_latent_size: 4 # Size of the latent representation after message passing. residual: false # Wether to use a ResNet style setup. Requires region_latent_size = latent_size num_peers: 3 # Number of closest peers to consider. predictor: layer_shapes: [3] # List of layer sizes for the predictor. activations: ['ReLU'] # Activation functions for the predictor layers. training: epochs: 1024 # Number of training epochs. batch_size: 32 # Batch size for training. num_batches: 1 # Number of batches per epoch. learning_rate: 0.01 # Learning rate for the optimizer. peer_gradients_factor: 0.33 # Factor for gradients acting on predictor throught peers. 0.0 = detach gradients. value_scale: 1 # Normalize data by dividing values by this (and multiple outputs) eval_freq: -1 # Frequency of evaluation during training (in epochs). save_path: models # Directory to save the best model and encoder. evaluation: full_compression: false # Perform full compression during evaluation. bitstream_encoding: type: identity # Bitstream encoding type: 'arithmetic', 'identity', 'bzip2'. data: url: https://content.neuralink.com/compression-challenge/data.zip # URL to download the dataset. directory: data # Directory to extract and store the dataset. split_ratio: 0.8 # Ratio to split the data into train and test sets. cut_length: null # Optional length to cut sequences to. profiler: enable: false # Enable profiler. --- name: DEFAULT project: Spikey_2 slurm: name: 'Spikey_{config[name]}' partitions: - single standard_output: ./reports/slurm/out_%A_%a.log standard_error: ./reports/slurm/err_%A_%a.log num_parallel_jobs: 50 cpus_per_task: 8 memory_per_cpu: 4000 time_limit: 1440 # in minutes ntasks: 1 venv: '.venv/bin/activate' sh_lines: - 'mkdir -p {tmp}/wandb' - 'mkdir -p {tmp}/local_pycache' - 'export PYTHONPYCACHEPREFIX={tmp}/local_pycache' runner: spikey scheduler: reps_per_version: 1 agents_per_job: 8 reps_per_agent: 1 wandb: project: '{config[project]}' group: '{config[name]}' job_type: '{delta_desc}' name: '{job_id}_{task_id}:{run_id}:{rand}={config[name]}_{delta_desc}' #tags: # - '{config[env][name]}' # - '{config[algo][name]}' sync_tensorboard: false monitor_gym: false save_code: false evaluation: full_compression: false bitstream_encoding: type: identity data: url: https://content.neuralink.com/compression-challenge/data.zip directory: data split_ratio: 0.8 cut_length: null profiler: enable: false training: eval_freq: -1 # 8 save_path: models peer_gradients_factor: 0.25 value_scale: 1000 middle_out: residual: false --- name: FC import: $ latent_projector: type: fc input_size: 1953 latent_size: 4 layer_shapes: [32, 8] activations: ['ReLU', 'ReLU'] middle_out: region_latent_size: 4 num_peers: 3 residual: true predictor: layer_shapes: [3] activations: ['ReLU'] training: epochs: 1024 batch_size: 32 num_batches: 1 learning_rate: 0.01 --- name: FC_AblLR import: $ latent_projector: type: fc input_size: 1953 latent_size: 4 layer_shapes: [32, 8] activations: ['ReLU', 'ReLU'] middle_out: region_latent_size: 4 num_peers: 3 residual: true predictor: layer_shapes: [3] activations: ['ReLU'] training: epochs: 1024 batch_size: 32 num_batches: 1 learning_rate: 0.01 device: cpu grid: training.learning_rate: [0.1, 0.01, 0.001, 0.0001] --- name: RNN import: $ latent_projector: type: rnn input_size: 1953 latent_size: 4 rnn_hidden_size: 3 rnn_num_layers: 2 middle_out: region_latent_size: 4 num_peers: 3 residual: true predictor: layer_shapes: [3] activations: ['ReLU'] training: epochs: 1024 batch_size: 32 num_batches: 2 learning_rate: 0.01 --- name: FOURIER import: $ latent_projector: type: fourier input_size: 19531 # 1s latent_size: 8 layer_shapes: [32, 8] activations: ['ReLU', 'ReLU'] pass_raw_len: 1953 # 0.1s middle_out: region_latent_size: 8 num_peers: 3 residual: true predictor: layer_shapes: [3] activations: ['ReLU'] training: epochs: 1024 batch_size: 32 num_batches: 16 learning_rate: 0.01 --- name: FC_AblPeerGrad # Best: 0.33 import: $ latent_projector: type: fc input_size: 1953 latent_size: 4 layer_shapes: [32, 8] activations: ['ReLU', 'ReLU'] middle_out: region_latent_size: 4 num_peers: 2 residual: true predictor: layer_shapes: [3] activations: ['ReLU'] training: epochs: 1024 batch_size: 16 num_batches: 1 learning_rate: 0.01 device: cpu grid: training: peer_gradients_factor: [0.0, 0.1, 0.25, 0.33, 0.5, 1.0] --- name: FC_NoPeer # Worse import: $ latent_projector: type: fc input_size: 1953 latent_size: 4 layer_shapes: [32, 8] activations: ['ReLU', 'ReLU'] middle_out: region_latent_size: 4 num_peers: 0 residual: true predictor: layer_shapes: [3] activations: ['ReLU'] training: epochs: 1024 batch_size: 16 num_batches: 1 learning_rate: 0.01 device: cpu --- name: FC_ScaleAbl # Best: 1000 import: $ latent_projector: type: fc input_size: 1953 latent_size: 4 layer_shapes: [32, 8] activations: ['ReLU', 'ReLU'] middle_out: region_latent_size: 4 num_peers: 3 residual: true predictor: layer_shapes: [3] activations: ['ReLU'] training: epochs: 1024 batch_size: 32 num_batches: 1 learning_rate: 0.01 device: cpu grid: training.value_scale: [1, 100, 1000, 10000] --- name: FC_BSAbl2 import: $ latent_projector: type: fc input_size: 1953 latent_size: 4 layer_shapes: [32, 8] activations: ['ReLU', 'ReLU'] middle_out: region_latent_size: 4 num_peers: 3 residual: true predictor: layer_shapes: [3] activations: ['ReLU'] training: epochs: 1024 batch_size: 32 num_batches: 1 learning_rate: 0.01 device: cpu grid: training.batch_size: [64, 128, 256]