import torch import torch.nn as nn def get_activation(name): activations = { 'ReLU': nn.ReLU, 'Sigmoid': nn.Sigmoid, 'Tanh': nn.Tanh, 'LeakyReLU': nn.LeakyReLU, 'ELU': nn.ELU, 'None': nn.Identity } return activations[name]() class LatentProjector(nn.Module): def __init__(self, input_size, latent_size, layer_shapes, activations): super(LatentProjector, self).__init__() layers = [] in_features = input_size for i, out_features in enumerate(layer_shapes): layers.append(nn.Linear(in_features, out_features)) if activations[i] != 'None': layers.append(get_activation(activations[i])) in_features = out_features layers.append(nn.Linear(in_features, latent_size)) self.fc = nn.Sequential(*layers) self.latent_size = latent_size def forward(self, x): return self.fc(x) class LatentRNNProjector(nn.Module): def __init__(self, input_size, rnn_hidden_size, rnn_num_layers, latent_size): super(LatentRNNProjector, self).__init__() self.rnn = nn.LSTM(input_size, rnn_hidden_size, rnn_num_layers, batch_first=True) self.fc = nn.Linear(rnn_hidden_size, latent_size) self.latent_size = latent_size def forward(self, x): out, _ = self.rnn(x) latent = self.fc(out) return latent class MiddleOut(nn.Module): def __init__(self, latent_size, output_size, num_peers): super(MiddleOut, self).__init__() self.num_peers = num_peers self.fc = nn.Linear(latent_size * 2 + 1, output_size) def forward(self, my_latent, peer_latents, peer_correlations): new_latents = [] for p in range(peer_latents.shape[-2]): peer_latent, correlation = peer_latents[:, p, :], peer_correlations[:, p] combined_input = torch.cat((my_latent, peer_latent, correlation.unsqueeze(1)), dim=-1) new_latent = self.fc(combined_input) new_latents.append(new_latent * correlation.unsqueeze(1)) new_latents = torch.stack(new_latents) averaged_latent = torch.mean(new_latents, dim=0) return my_latent - averaged_latent class Predictor(nn.Module): def __init__(self, output_size, layer_shapes, activations): super(Predictor, self).__init__() layers = [] in_features = output_size for i, out_features in enumerate(layer_shapes): layers.append(nn.Linear(in_features, out_features)) if activations[i] != 'None': layers.append(get_activation(activations[i])) in_features = out_features layers.append(nn.Linear(in_features, 1)) self.fc = nn.Sequential(*layers) def forward(self, latent): return self.fc(latent)