import os import torch import torch.nn as nn import numpy as np import random, math from utils import visualize_prediction, plot_delta_distribution from data_processing import download_and_extract_data, load_all_wavs, split_data_by_time, compute_topology_metrics from models import LatentFCProjector, LatentRNNProjector, LatentFourierProjector,MiddleOut, Predictor from bitstream import IdentityEncoder, ArithmeticEncoder, Bzip2Encoder, BinomialHuffmanEncoder import wandb from pycallgraph2 import PyCallGraph from pycallgraph2.output import GraphvizOutput from slate import Slate, Slate_Runner class SpikeRunner(Slate_Runner): def setup(self, name): print("Setup SpikeRunner") self.name = name slate, config = self.slate, self.config training_config = slate.consume(config, 'training', expand=True) data_config = slate.consume(config, 'data', expand=True) data_url = slate.consume(data_config, 'url') cut_length = slate.consume(data_config, 'cut_length', None) download_and_extract_data(data_url) all_data = load_all_wavs('data', cut_length) split_ratio = slate.consume(data_config, 'split_ratio', 0.5) self.train_data, self.test_data = split_data_by_time(all_data, split_ratio) print("Reconstructing thread topology") self.topology_matrix = compute_topology_metrics(self.train_data) # Number of peers for message passing self.num_peers = slate.consume(config, 'middle_out.num_peers') # Precompute sorted indices for the top num_peers correlated leads print("Precomputing sorted peer indices") self.sorted_peer_indices = np.argsort(-self.topology_matrix, axis=1)[:, :self.num_peers] # Model setup print("Setting up models") latent_projector_type = slate.consume(config, 'latent_projector.type', default='fc') latent_size = slate.consume(config, 'latent_projector.latent_size') input_size = slate.consume(config, 'latent_projector.input_size') region_latent_size = slate.consume(config, 'middle_out.region_latent_size') device = slate.consume(training_config, 'device', 'auto') if device == 'auto': device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.device = device if latent_projector_type == 'fc': self.projector = LatentFCProjector(latent_size=latent_size, input_size=input_size, **slate.consume(config, 'latent_projector', expand=True)).to(device) elif latent_projector_type == 'rnn': self.projector = LatentRNNProjector(latent_size=latent_size, input_size=input_size, **slate.consume(config, 'latent_projector', expand=True)).to(device) elif latent_projector_type == 'fourier': self.projector = LatentFourierProjector(latent_size=latent_size, input_size=input_size, **slate.consume(config, 'latent_projector', expand=True)).to(device) else: raise Exception('No such Latent Projector') self.middle_out = MiddleOut(latent_size=latent_size, region_latent_size=region_latent_size, num_peers=self.num_peers, **slate.consume(config, 'middle_out', expand=True)).to(device) self.predictor = Predictor(region_latent_size=region_latent_size, **slate.consume(config, 'predictor', expand=True)).to(device) # Training parameters self.input_size = input_size self.epochs = slate.consume(training_config, 'epochs') self.batch_size = slate.consume(training_config, 'batch_size') self.num_batches = slate.consume(training_config, 'num_batches') self.learning_rate = slate.consume(training_config, 'learning_rate') self.eval_freq = slate.consume(training_config, 'eval_freq') self.save_path = slate.consume(training_config, 'save_path') self.peer_gradients_factor = float(slate.consume(training_config, 'peer_gradients_factor', 1.0)) self.value_scale = slate.consume(training_config, 'value_scale') # Evaluation parameter self.full_compression = slate.consume(config, 'evaluation.full_compression', default=False) # Bitstream encoding bitstream_type = slate.consume(config, 'bitstream_encoding.type', default='identity') if bitstream_type == 'identity': self.encoder = IdentityEncoder() elif bitstream_type == 'arithmetic': self.encoder = ArithmeticEncoder() elif bitstream_type == 'bzip2': self.encoder = Bzip2Encoder() elif bitstream_type == 'binomHuffman': self.encoder = BinomialHuffmanEncoder() else: raise Exception('No such Encoder') # Optimizer self.optimizer = torch.optim.Adam(list(self.projector.parameters()) + list(self.middle_out.parameters()) + list(self.predictor.parameters()), lr=self.learning_rate) self.criterion = torch.nn.MSELoss() print("SpikeRunner initialization complete") def run(self, run, forceNoProfile=False): if self.slate.consume(self.config, 'profiler.enable', False) and not forceNoProfile: print('{PROFILER RUNNING}') with PyCallGraph(output=GraphvizOutput(output_file=f'./profiler/{self.name}.png')): self.run(run, forceNoProfile=True) print('{PROFILER DONE}') return self.train_model() def train_model(self): device = self.device min_length = min([len(seq) for seq in self.train_data]) best_test_score = float('inf') for epoch in range(self.epochs): total_loss = 0 errs = [] rels = [] derrs = [] for batch_num in range(self.num_batches): # Create indices for training data and shuffle them indices = list(range(len(self.train_data))) random.shuffle(indices) stacked_segments = [] peer_metrics = [] targets = [] lasts = [] for idx in indices[:self.batch_size]: lead_data = self.train_data[idx][:min_length] # Slide a window over the data with overlap stride = max(1, self.input_size // 3) # Ensuring stride is at least 1 offset = np.random.randint(0, stride) for i in range(offset, len(lead_data) - self.input_size-1-offset, stride): lead_segment = lead_data[i:i + self.input_size] inputs = torch.tensor(lead_segment, dtype=torch.float32).to(device) # Collect the segments for the current lead and its peers peer_segments = [] for peer_idx in self.sorted_peer_indices[idx]: peer_segment = self.train_data[peer_idx][i:i + self.input_size] peer_segments.append(torch.tensor(peer_segment, dtype=torch.float32).to(device)) peer_metric = torch.tensor([self.topology_matrix[idx, peer_idx] for peer_idx in self.sorted_peer_indices[idx]], dtype=torch.float32).to(device) peer_metrics.append(peer_metric) # Stack the segments to form the batch stacked_segment = torch.stack([inputs] + peer_segments).to(device) stacked_segments.append(stacked_segment) target = lead_data[i + self.input_size + 1] targets.append(target) last = lead_data[i + self.input_size] lasts.append(last) # Pass the batch through the projector latents = self.projector(torch.stack(stacked_segments)/self.value_scale) my_latent = latents[:, 0, :] peer_latents = latents[:, 1:, :] # Scale gradients during backwards pass as configured if self.peer_gradients_factor == 1.0: pass elif self.peer_gradients_factor == 0.0: peer_latents = peer_latents.detach() else: peer_latents.register_hook(lambda grad: grad*self.peer_gradients_factor) # Pass through MiddleOut region_latent = self.middle_out(my_latent, peer_latents, torch.stack(peer_metrics)) prediction = self.predictor(region_latent)*self.value_scale # Calculate loss and backpropagate tar = torch.tensor(targets, dtype=torch.float32).unsqueeze(-1).to(device) las = torch.tensor(lasts, dtype=torch.float32).unsqueeze(-1).numpy() loss = self.criterion(prediction, tar) err = np.sum(np.abs(prediction.cpu().detach().numpy() - tar.cpu().detach().numpy())) derr = np.sum(np.abs(las - tar.cpu().detach().numpy())) rel = err / np.sum(tar.cpu().detach().numpy()) total_loss += loss.item() derrs.append(derr/np.prod(tar.size()).item()) errs.append(err/np.prod(tar.size()).item()) rels.append(rel.item()) self.optimizer.zero_grad() loss.backward() self.optimizer.step() tot_err = sum(errs)/len(errs) tot_derr = sum(derrs)/len(derrs) adv_delta = tot_derr / tot_err approx_ratio = 1/(sum(rels)/len(rels)) wandb.log({"epoch": epoch, "loss": total_loss, "err": tot_err, "approx_ratio": approx_ratio, "adv_delta": adv_delta}, step=epoch) print(f'Epoch {epoch + 1}/{self.epochs}, Loss: {total_loss}') if self.eval_freq != -1 and (epoch + 1) % self.eval_freq == 0: print(f'Starting evaluation for epoch {epoch + 1}') test_loss = self.evaluate_model(epoch) if test_loss < best_test_score: best_test_score = test_loss self.save_models(epoch) print(f'Evaluation complete for epoch {epoch + 1}') def evaluate_model(self, epoch): print('Evaluating model...') device = self.device # Save the current mode of the models projector_mode = self.projector.training middle_out_mode = self.middle_out.training predictor_mode = self.predictor.training # Set models to evaluation mode self.projector.eval() self.middle_out.eval() self.predictor.eval() total_loss = 0 all_true = [] all_predicted = [] all_deltas = [] compression_ratios = [] exact_matches = 0 total_sequences = 0 with torch.no_grad(): min_length = min([len(seq) for seq in self.test_data]) errs = [] rels = [] derrs = [] for lead_idx in range(len(self.test_data)): lead_data = self.test_data[lead_idx][:min_length] indices = list(range(len(self.test_data))) random.shuffle(indices) stacked_segments = [] peer_metrics = [] targets = [] lasts = [] for i in range(0, len(lead_data) - self.input_size - 1, self.input_size // 8): lead_segment = lead_data[i:i + self.input_size] inputs = torch.tensor(lead_segment, dtype=torch.float32).to(device) peer_segments = [] for peer_idx in self.sorted_peer_indices[lead_idx]: peer_segment = self.test_data[peer_idx][:min_length][i:i + self.input_size] peer_segments.append(torch.tensor(peer_segment, dtype=torch.float32).to(device)) peer_metric = torch.tensor([self.topology_matrix[lead_idx, peer_idx] for peer_idx in self.sorted_peer_indices[lead_idx]], dtype=torch.float32).to(device) peer_metrics.append(peer_metric) stacked_segment = torch.stack([inputs] + peer_segments).to(device) stacked_segments.append(stacked_segment) target = lead_data[i + self.input_size + 1] targets.append(target) last = lead_data[i + self.input_size] lasts.append(last) latents = self.projector(torch.stack(stacked_segments) / self.value_scale) my_latent = latents[:, 0, :] peer_latents = latents[:, 1:, :] region_latent = self.middle_out(my_latent, peer_latents, torch.stack(peer_metrics)) prediction = self.predictor(region_latent) * self.value_scale tar = torch.tensor(targets, dtype=torch.float32).unsqueeze(-1).to(device) las = torch.tensor(lasts, dtype=torch.float32).unsqueeze(-1).numpy() loss = self.criterion(prediction, tar) err = np.sum(np.abs(prediction.cpu().detach().numpy() - tar.cpu().detach().numpy())) derr = np.sum(np.abs(las - tar.cpu().detach().numpy())) rel = err / np.sum(tar.cpu().detach().numpy()) total_loss += loss.item() derrs.append(derr / np.prod(tar.size()).item()) errs.append(err / np.prod(tar.size()).item()) rels.append(rel.item()) all_true.extend(tar.cpu().numpy()) all_predicted.extend(prediction.cpu().numpy()) all_deltas.extend((tar.cpu().numpy() - prediction.cpu().numpy()).tolist()) if self.full_compression: self.encoder.build_model(my_latent.cpu().numpy()) compressed_data = self.encoder.encode(my_latent.cpu().numpy()) decompressed_data = self.encoder.decode(compressed_data, len(my_latent)) compression_ratio = len(my_latent) / len(compressed_data) compression_ratios.append(compression_ratio) if np.allclose(my_latent.cpu().numpy(), decompressed_data, atol=1e-5): exact_matches += 1 total_sequences += 1 avg_loss = total_loss / len(self.test_data) tot_err = sum(errs) / len(errs) tot_derr = sum(derrs) / len(derrs) adv_delta = tot_derr / tot_err approx_ratio = 1 / (sum(rels) / len(rels)) print(f'Epoch {epoch+1}, Evaluation Loss: {avg_loss}') wandb.log({"evaluation_loss": avg_loss, "err": tot_err, "approx_ratio": approx_ratio, "adv_delta": adv_delta}, step=epoch) # Visualize predictions visualize_prediction(all_true, all_predicted, all_deltas, epoch=epoch, num_points=1953, name='0.1s') visualize_prediction(all_true, all_predicted, all_deltas, epoch=epoch, num_points=195, name='0.01s') visualize_prediction(all_true, all_predicted, all_deltas, epoch=epoch, num_points=20, name='0.001s') # Plot delta distribution delta_plot_path = plot_delta_distribution(np.array(all_deltas), epoch) wandb.log({"delta_distribution": wandb.Image(delta_plot_path)}, step=epoch) if self.full_compression: avg_compression_ratio = sum(compression_ratios) / len(compression_ratios) exact_match_percentage = (exact_matches / total_sequences) * 100 print(f'Epoch {epoch+1}, Average Compression Ratio: {avg_compression_ratio}') print(f'Epoch {epoch+1}, Exact Match Percentage: {exact_match_percentage}%') wandb.log({"average_compression_ratio": avg_compression_ratio}, step=epoch) wandb.log({"exact_match_percentage": exact_match_percentage}, step=epoch) # Restore the original mode of the models if projector_mode: self.projector.train() else: self.projector.eval() if middle_out_mode: self.middle_out.train() else: self.middle_out.eval() if predictor_mode: self.predictor.train() else: self.predictor.eval() print('Evaluation done for this epoch.') return avg_loss def save_models(self, epoch): return print('Saving models...') torch.save(self.projector.state_dict(), os.path.join(self.save_path, f"best_projector_epoch_{epoch+1}.pt")) torch.save(self.middle_out.state_dict(), os.path.join(self.save_path, f"best_middle_out_epoch_{epoch+1}.pt")) torch.save(self.predictor.state_dict(), os.path.join(self.save_path, f"best_predictor_epoch_{epoch+1}.pt")) print(f"New high score! Models saved at epoch {epoch+1}.") if __name__ == '__main__': print('Initializing...') slate = Slate({'spikey': SpikeRunner}) slate.from_args() print('Done.')