Spikey/bitstream.py

169 lines
5.1 KiB
Python

import bz2, math
import heapq
from abc import ABC, abstractmethod
from arithmetic_compressor import AECompressor
from arithmetic_compressor.models import StaticModel
import numpy as np
class BaseEncoder(ABC):
@abstractmethod
def encode(self, data):
pass
@abstractmethod
def decode(self, encoded_data):
pass
@abstractmethod
def build_model(self, delta_samples):
pass
class IdentityEncoder(BaseEncoder):
def encode(self, data):
return data
def decode(self, encoded_data):
return encoded_data
def build_model(self, delta_samples):
pass
class ArithmeticEncoder(BaseEncoder):
def encode(self, data):
if not hasattr(self, 'model'):
raise ValueError("Model not built. Call build_model(data) before encoding.")
coder = AECompressor(self.model)
compressed_data = coder.compress(data)
return compressed_data
def decode(self, encoded_data, num_symbols):
coder = AECompressor(self.model)
decoded_data = coder.decompress(encoded_data, num_symbols)
return decoded_data
def build_model(self, delta_samples):
# Convert data to list of tuples
data = [tuple(d) for d in delta_samples]
symbol_counts = {symbol: data.count(symbol) for symbol in set(data)}
total_symbols = sum(symbol_counts.values())
probabilities = {symbol: count / total_symbols for symbol, count in symbol_counts.items()}
self.model = StaticModel(probabilities)
class Bzip2Encoder(BaseEncoder):
def encode(self, data):
return bz2.compress(bytearray(data))
def decode(self, encoded_data):
return list(bz2.decompress(encoded_data))
def build_model(self, data):
pass
class BinomialHuffmanEncoder(BaseEncoder):
def encode(self, data):
return ''.join(self.codebook[int(value)+1024] for value in data)
def decode(self, encoded_data):
decoded_output = []
current_node = self.root
for bit in encoded_data:
if bit == '0':
current_node = current_node.left
else:
current_node = current_node.right
if current_node.left is None and current_node.right is None:
decoded_output.append(current_node.value-1024)
current_node = self.root
return decoded_output
def _generate_codes(self, root):
if root is None:
return {}
codebook = {}
stack = [(root, "")]
while stack:
node, prefix = stack.pop()
if node.value is not None:
codebook[node.value] = prefix
if node.right is not None:
stack.append((node.right, prefix + "1"))
if node.left is not None:
stack.append((node.left, prefix + "0"))
return codebook
def build_model(self, delta_samples, adaptive=True):
num_symbols = 2**11
mean = (num_symbols - 1) / 2
std_dev = math.sqrt(num_symbols / 4)
if adaptive:
std_dev = np.std(delta_samples)
class Node:
def __init__(self, value, freq):
self.value = value
self.freq = freq
self.left = None
self.right = None
def __lt__(self, other):
return self.freq < other.freq
# Build a min-heap
heap = [Node(x, (1 / (std_dev * math.sqrt(2 * math.pi))) * math.exp(-0.5 * ((x - mean) / std_dev) ** 2)) for x in range(num_symbols)]
heapq.heapify(heap)
# Merge nodes to build the Huffman tree
while len(heap) > 1:
left = heapq.heappop(heap)
right = heapq.heappop(heap)
merged = Node(None, left.freq + right.freq)
merged.left = left
merged.right = right
heapq.heappush(heap, merged)
# The root of the Huffman tree
self.root = heapq.heappop(heap)
self.codebook = self._generate_codes(self.root)
class RiceEncoder(BaseEncoder):
def encode(self, data):
data = np.array(data).astype(int)
encoded_data = []
for num in data:
num = self.zigzag_encode(num)
q = num // self.m
r = num % self.m
encoded_data.append('1' * q + '0' + format(r, f'0{self.k}b'))
return ''.join(encoded_data)
def decode(self, encoded_data):
decoded_output = []
i = 0
while i < len(encoded_data):
q = 0
while encoded_data[i] == '1':
q += 1
i += 1
i += 1 # skip the '0'
r = int(encoded_data[i:i + self.k], 2)
i += self.k
num = q * self.m + r
decoded_output.append(self.zigzag_decode(num))
return np.array(decoded_output)
def build_model(self, data, k=3):
self.k = k
self.m = 1 << k
def zigzag_encode(self, value):
return (value << 1) ^ (value >> 31)
def zigzag_decode(self, value):
return (value >> 1) ^ -(value & 1)