83 lines
2.8 KiB
Python
83 lines
2.8 KiB
Python
import numpy as np
|
|
from scipy.io import wavfile
|
|
import urllib.request
|
|
import zipfile
|
|
import os
|
|
|
|
def download_and_extract_data(url):
|
|
if not os.path.exists('data'):
|
|
zip_path = os.path.join('.', 'data.zip')
|
|
urllib.request.urlretrieve(url, zip_path)
|
|
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
|
zip_ref.extractall('.')
|
|
os.remove(zip_path)
|
|
|
|
def load_wav(file_path):
|
|
sample_rate, data = wavfile.read(file_path)
|
|
return sample_rate, data
|
|
|
|
def load_all_wavs(data_dir, cut_length=None):
|
|
wav_files = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith('.wav')]
|
|
all_data = []
|
|
for file_path in wav_files:
|
|
_, data = load_wav(file_path)
|
|
if cut_length is not None:
|
|
print(cut_length)
|
|
data = data[:cut_length]
|
|
all_data.append(data)
|
|
return all_data
|
|
|
|
def save_wav(file_path, data, sample_rate=19531):
|
|
wavfile.write(file_path, sample_rate, data)
|
|
|
|
def save_all_wavs(output_dir, all_data, input_filenames):
|
|
for data, filename in zip(all_data, input_filenames):
|
|
output_file_path = os.path.join(output_dir, filename)
|
|
save_wav(output_file_path, data)
|
|
|
|
def compute_topology_metrics(data):
|
|
min_length = min(len(d) for d in data)
|
|
|
|
# Trim all leads to the minimum length
|
|
trimmed_data = [d[:min_length] for d in data]
|
|
|
|
metric_matrix = np.corrcoef(trimmed_data)
|
|
np.fill_diagonal(metric_matrix, 0)
|
|
return np.abs(metric_matrix)
|
|
|
|
def split_data_by_time(data, split_ratio=0.5):
|
|
train_data = []
|
|
test_data = []
|
|
for lead in data:
|
|
split_idx = int(len(lead) * split_ratio)
|
|
train_data.append(lead[:split_idx])
|
|
test_data.append(lead[split_idx:])
|
|
return train_data, test_data
|
|
|
|
def unfuckify(nums):
|
|
return np.round((nums + 33) / 64).astype(int)
|
|
|
|
def unfuckify_all(wavs):
|
|
return [unfuckify(wav) for wav in wavs]
|
|
|
|
# The released dataset is 10bit resolution encoded in a 16bit range with a completely fucked up mapping, which we have to replicate for lossless fml
|
|
# This func works for all samples contained in the provided dataset, but I don't guarentee it works for all possible data
|
|
# The solution would be to just never fuck up the data (operate on the true 10bit values)
|
|
def refuckify(nums):
|
|
n = np.round((nums * 64) - 32).astype(int)
|
|
n[n >= 32] -= 1
|
|
n[n >= 160] -= 1
|
|
n[n >= 222] -= -1
|
|
|
|
for i in [543, 1568, 2657, 3682, 4707, 5732, 6821, 7846, 8871, 9896, 10921, 12010, 13035, 14060, 15085, 16174, 17199, 18224, 19249, 20338, 21363, 22388, 23413, 24502, 25527, 26552, 27577, 28666, 29691, 30716, 31741]:
|
|
n[n >= i] -= -1
|
|
n[n <= -(i+1)] -= 1
|
|
|
|
n[n <= -32742] -= 3
|
|
n[n <= -32770] -= -2
|
|
n[n <= -32832] -= -65599
|
|
|
|
return n
|
|
|
|
def refuckify_all(wavs):
|
|
return [refuckify(wav) for wav in wavs] |