Spikey/data_processing.py

76 lines
2.5 KiB
Python

import numpy as np
from scipy.io import wavfile
import urllib.request
import zipfile
import os
def download_and_extract_data(url):
if not os.path.exists('data'):
zip_path = os.path.join('.', 'data.zip')
urllib.request.urlretrieve(url, zip_path)
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall('.')
os.remove(zip_path)
def load_wav(file_path):
sample_rate, data = wavfile.read(file_path)
return sample_rate, data
def load_all_wavs(data_dir, cut_length=None):
wav_files = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith('.wav')]
all_data = []
for file_path in wav_files:
_, data = load_wav(file_path)
if cut_length is not None:
print(cut_length)
data = data[:cut_length]
all_data.append(unfuckify(data))
return all_data
def save_wav(file_path, data, sample_rate=19531):
wavfile.write(file_path, sample_rate, data)
def save_all_wavs(output_dir, all_data, input_filenames):
for data, filename in zip(all_data, input_filenames):
output_file_path = os.path.join(output_dir, filename)
save_wav(output_file_path, refuckify(data))
def compute_topology_metrics(data):
num_leads = len(data)
min_length = min(len(d) for d in data)
# Trim all leads to the minimum length
trimmed_data = [d[:min_length] for d in data]
metric_matrix = np.corrcoef(trimmed_data)
np.fill_diagonal(metric_matrix, 0)
return np.abs(metric_matrix)
def split_data_by_time(data, split_ratio=0.5):
train_data = []
test_data = []
for lead in data:
split_idx = int(len(lead) * split_ratio)
train_data.append(lead[:split_idx])
test_data.append(lead[split_idx:])
return train_data, test_data
def unfuckify(nums):
return np.round((nums + 33) / 64).astype(int)
# The released dataset is 10bit resolution encoded in a 16bit range with a completely fucked up mapping, which we have to replicate for lossless fml
def refuckify(nums):
n = np.round((nums * 64) - 32).astype(int)
n[n >= 32] -= 1
n[n >= 160] -= 1
n[n >= 222] -= -1
for i in [543, 1568, 2657, 3682, 4707, 5732, 6821, 7846, 8871, 9896, 10921, 12010, 13035, 14060, 15085, 16174, 17199, 18224, 19249, 20338, 21363, 22388, 23413, 24502, 25527, 26552, 27577, 28666, 29691, 30716, 31741]:
n[n >= i] -= -1
n[n <= -(i+1)] -= 1
n[n <= -32742] -= 3
n[n <= -32770] -= -2
n[n <= -32832] -= -65599
return n