40 lines
1.2 KiB
Python
40 lines
1.2 KiB
Python
from sympy import *
|
|
import math
|
|
|
|
class Model():
|
|
def __init__(self):
|
|
self.layers = []
|
|
|
|
def append(self, layer):
|
|
if len(self.layers)!=0:
|
|
layer._connect(self.layers[-1])
|
|
self.layers.append(layer)
|
|
|
|
def collapse(self):
|
|
act = symbols(' '.join(['x'+str(i) for i in range(self.layers[0].length)]))
|
|
for layer in self.layers[1:]:
|
|
act = layer.activate(act)
|
|
return list(act)
|
|
|
|
class Layer():
|
|
def __init__(self, length):
|
|
self.length = length
|
|
self.layNum = 0
|
|
|
|
def _connect(self, prev):
|
|
self.prev = prev
|
|
self.weights = []
|
|
self.layNum = self.prev.layNum + 1
|
|
for w in range(self.length * (self.prev.length+1)):
|
|
self.weights.append(symbols('w'+str(self.layNum)+'_'+str(w)))
|
|
|
|
def activate(self, inp):
|
|
act = []
|
|
for neuron in range(self.length):
|
|
accum = self.weights[(self.prev.length+1)*neuron]*self.prev.length
|
|
for iNeuron in range(self.prev.length):
|
|
accum += inp[iNeuron]*self.weights[(self.prev.length+1)*neuron+iNeuron+1]
|
|
a = 1/(1+math.e**(-(accum)/self.prev.length))
|
|
act.append(a)
|
|
return act
|