update eval configs
This commit is contained in:
parent
ace2bbdab9
commit
169a16dda7
@ -19,6 +19,7 @@ denoising_steps: 20
|
||||
cond_steps: 1
|
||||
horizon_steps: 4
|
||||
act_steps: 4
|
||||
ft_denoising_steps: 10
|
||||
|
||||
n_steps: 25
|
||||
render_num: 40
|
||||
@ -47,7 +48,8 @@ env:
|
||||
reset_within_step: False
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
#
|
||||
|
@ -21,6 +21,7 @@ horizon_steps: 8
|
||||
act_steps: 8
|
||||
use_ddim: True
|
||||
ddim_steps: 5
|
||||
ft_denoising_steps: 5
|
||||
|
||||
n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'}
|
||||
render_num: 0
|
||||
@ -41,7 +42,8 @@ env:
|
||||
sparse_reward: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -21,6 +21,7 @@ horizon_steps: 16
|
||||
act_steps: 8
|
||||
use_ddim: True
|
||||
ddim_steps: 5
|
||||
ft_denoising_steps: 5
|
||||
|
||||
n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'}
|
||||
render_num: 0
|
||||
@ -41,7 +42,8 @@ env:
|
||||
sparse_reward: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -21,6 +21,7 @@ horizon_steps: 8
|
||||
act_steps: 8
|
||||
use_ddim: True
|
||||
ddim_steps: 5
|
||||
ft_denoising_steps: 5
|
||||
|
||||
n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'}
|
||||
render_num: 0
|
||||
@ -41,7 +42,8 @@ env:
|
||||
sparse_reward: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -21,6 +21,7 @@ horizon_steps: 16
|
||||
act_steps: 8
|
||||
use_ddim: True
|
||||
ddim_steps: 5
|
||||
ft_denoising_steps: 5
|
||||
|
||||
n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'}
|
||||
render_num: 0
|
||||
@ -41,7 +42,8 @@ env:
|
||||
sparse_reward: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -21,6 +21,7 @@ horizon_steps: 8
|
||||
act_steps: 8
|
||||
use_ddim: True
|
||||
ddim_steps: 5
|
||||
ft_denoising_steps: 5
|
||||
|
||||
n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'}
|
||||
render_num: 0
|
||||
@ -41,7 +42,8 @@ env:
|
||||
sparse_reward: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -21,6 +21,7 @@ horizon_steps: 16
|
||||
act_steps: 8
|
||||
use_ddim: True
|
||||
ddim_steps: 5
|
||||
ft_denoising_steps: 5
|
||||
|
||||
n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'}
|
||||
render_num: 0
|
||||
@ -41,7 +42,8 @@ env:
|
||||
sparse_reward: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -19,6 +19,7 @@ denoising_steps: 20
|
||||
cond_steps: 1
|
||||
horizon_steps: 4
|
||||
act_steps: 4
|
||||
ft_denoising_steps: 10
|
||||
|
||||
n_steps: 250 # each episode can take maximum (max_episode_steps / act_steps, =250 right now) steps but may finish earlier in gym. We only count episodes finished within n_steps for evaluation.
|
||||
render_num: 0
|
||||
@ -40,7 +41,8 @@ env:
|
||||
reset_within_step: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
#
|
||||
|
@ -19,6 +19,7 @@ denoising_steps: 20
|
||||
cond_steps: 1
|
||||
horizon_steps: 4
|
||||
act_steps: 4
|
||||
ft_denoising_steps: 10
|
||||
|
||||
n_steps: 250 # each episode can take maximum (max_episode_steps / act_steps, =250 right now) steps but may finish earlier in gym. We only count episodes finished within n_steps for evaluation.
|
||||
render_num: 0
|
||||
@ -40,7 +41,8 @@ env:
|
||||
reset_within_step: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
#
|
||||
|
@ -19,6 +19,7 @@ denoising_steps: 20
|
||||
cond_steps: 1
|
||||
horizon_steps: 4
|
||||
act_steps: 4
|
||||
ft_denoising_steps: 10
|
||||
|
||||
n_steps: 70
|
||||
render_num: 0
|
||||
@ -40,7 +41,8 @@ env:
|
||||
reset_within_step: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
#
|
||||
|
@ -19,6 +19,7 @@ denoising_steps: 20
|
||||
cond_steps: 1
|
||||
horizon_steps: 4
|
||||
act_steps: 4
|
||||
ft_denoising_steps: 10
|
||||
|
||||
n_steps: 250 # each episode can take maximum (max_episode_steps / act_steps, =250 right now) steps but may finish earlier in gym. We only count episodes finished within n_steps for evaluation.
|
||||
render_num: 0
|
||||
@ -40,7 +41,8 @@ env:
|
||||
reset_within_step: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
#
|
||||
|
@ -20,6 +20,7 @@ denoising_steps: 20
|
||||
cond_steps: 1
|
||||
horizon_steps: 4
|
||||
act_steps: 4
|
||||
ft_denoising_steps: 10
|
||||
|
||||
n_steps: 300 # each episode takes max_episode_steps / act_steps steps
|
||||
render_num: 0
|
||||
@ -44,7 +45,8 @@ env:
|
||||
reset_within_step: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -23,6 +23,7 @@ horizon_steps: 4
|
||||
act_steps: 4
|
||||
use_ddim: True
|
||||
ddim_steps: 5
|
||||
ft_denoising_steps: 5
|
||||
|
||||
n_steps: 300 # each episode takes max_episode_steps / act_steps steps
|
||||
render_num: 0
|
||||
@ -58,7 +59,8 @@ shape_meta:
|
||||
shape: [7]
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -20,6 +20,7 @@ denoising_steps: 20
|
||||
cond_steps: 1
|
||||
horizon_steps: 4
|
||||
act_steps: 4
|
||||
ft_denoising_steps: 10
|
||||
|
||||
n_steps: 75 # each episode takes max_episode_steps / act_steps steps
|
||||
render_num: 0
|
||||
@ -44,7 +45,8 @@ env:
|
||||
reset_within_step: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -23,6 +23,7 @@ horizon_steps: 4
|
||||
act_steps: 4
|
||||
use_ddim: True
|
||||
ddim_steps: 5
|
||||
ft_denoising_steps: 5
|
||||
|
||||
n_steps: 300 # each episode takes max_episode_steps / act_steps steps
|
||||
render_num: 0
|
||||
@ -58,7 +59,8 @@ shape_meta:
|
||||
shape: [7]
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -20,6 +20,7 @@ denoising_steps: 20
|
||||
cond_steps: 1
|
||||
horizon_steps: 4
|
||||
act_steps: 4
|
||||
ft_denoising_steps: 10
|
||||
|
||||
n_steps: 300 # each episode takes max_episode_steps / act_steps steps
|
||||
render_num: 0
|
||||
@ -44,7 +45,8 @@ env:
|
||||
reset_within_step: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -23,6 +23,7 @@ horizon_steps: 4
|
||||
act_steps: 4
|
||||
use_ddim: True
|
||||
ddim_steps: 5
|
||||
ft_denoising_steps: 5
|
||||
|
||||
n_steps: 300 # each episode takes max_episode_steps / act_steps steps
|
||||
render_num: 0
|
||||
@ -58,7 +59,8 @@ shape_meta:
|
||||
shape: [7]
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -20,6 +20,7 @@ denoising_steps: 20
|
||||
cond_steps: 1
|
||||
horizon_steps: 4
|
||||
act_steps: 4
|
||||
ft_denoising_steps: 10
|
||||
|
||||
n_steps: 75 # each episode takes max_episode_steps / act_steps steps
|
||||
render_num: 0
|
||||
@ -44,7 +45,8 @@ env:
|
||||
reset_within_step: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -23,6 +23,7 @@ horizon_steps: 4
|
||||
act_steps: 4
|
||||
use_ddim: True
|
||||
ddim_steps: 5
|
||||
ft_denoising_steps: 5
|
||||
|
||||
n_steps: 300 # each episode takes max_episode_steps / act_steps steps
|
||||
render_num: 0
|
||||
@ -58,7 +59,8 @@ shape_meta:
|
||||
shape: [7]
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -20,6 +20,7 @@ denoising_steps: 20
|
||||
cond_steps: 1
|
||||
horizon_steps: 4
|
||||
act_steps: 4
|
||||
ft_denoising_steps: 10
|
||||
|
||||
n_steps: 400 # each episode takes max_episode_steps / act_steps steps
|
||||
render_num: 0
|
||||
@ -44,7 +45,8 @@ env:
|
||||
reset_within_step: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -23,6 +23,7 @@ horizon_steps: 4
|
||||
act_steps: 4
|
||||
use_ddim: True
|
||||
ddim_steps: 5
|
||||
ft_denoising_steps: 5
|
||||
|
||||
n_steps: 400 # each episode takes max_episode_steps / act_steps steps
|
||||
render_num: 0
|
||||
@ -58,7 +59,8 @@ shape_meta:
|
||||
shape: [7]
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -20,6 +20,7 @@ denoising_steps: 20
|
||||
cond_steps: 1
|
||||
horizon_steps: 4
|
||||
act_steps: 4
|
||||
ft_denoising_steps: 10
|
||||
|
||||
n_steps: 100 # each episode takes max_episode_steps / act_steps steps
|
||||
render_num: 0
|
||||
@ -44,7 +45,8 @@ env:
|
||||
reset_within_step: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -23,6 +23,7 @@ horizon_steps: 4
|
||||
act_steps: 4
|
||||
use_ddim: True
|
||||
ddim_steps: 5
|
||||
ft_denoising_steps: 5
|
||||
|
||||
n_steps: 400 # each episode takes max_episode_steps / act_steps steps
|
||||
render_num: 0
|
||||
@ -58,7 +59,8 @@ shape_meta:
|
||||
shape: [7]
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -20,6 +20,7 @@ denoising_steps: 20
|
||||
cond_steps: 1
|
||||
horizon_steps: 8
|
||||
act_steps: 8
|
||||
ft_denoising_steps: 10
|
||||
|
||||
n_steps: 400 # each episode takes max_episode_steps / act_steps steps
|
||||
render_num: 0
|
||||
@ -46,9 +47,9 @@ env:
|
||||
max_episode_steps: ${env.max_episode_steps}
|
||||
reset_within_step: True
|
||||
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -23,6 +23,7 @@ horizon_steps: 8
|
||||
act_steps: 8
|
||||
use_ddim: True
|
||||
ddim_steps: 5
|
||||
ft_denoising_steps: 5
|
||||
|
||||
n_steps: 200 # each episode takes max_episode_steps / act_steps steps
|
||||
render_num: 0
|
||||
@ -62,7 +63,8 @@ shape_meta:
|
||||
shape: [14]
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -20,6 +20,7 @@ denoising_steps: 20
|
||||
cond_steps: 1
|
||||
horizon_steps: 16
|
||||
act_steps: 8
|
||||
ft_denoising_steps: 10
|
||||
|
||||
n_steps: 100 # each episode takes max_episode_steps / act_steps steps
|
||||
render_num: 0
|
||||
@ -47,7 +48,8 @@ env:
|
||||
reset_within_step: True
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
@ -23,6 +23,7 @@ horizon_steps: 16
|
||||
act_steps: 8
|
||||
use_ddim: True
|
||||
ddim_steps: 5
|
||||
ft_denoising_steps: 5
|
||||
|
||||
n_steps: 400 # each episode takes max_episode_steps / act_steps steps
|
||||
render_num: 0
|
||||
@ -62,7 +63,8 @@ shape_meta:
|
||||
shape: [14]
|
||||
|
||||
model:
|
||||
_target_: model.diffusion.diffusion.DiffusionModel
|
||||
_target_: model.diffusion.diffusion_eval_ft.DiffusionEvalFT
|
||||
ft_denoising_steps: ${ft_denoising_steps}
|
||||
predict_epsilon: True
|
||||
denoised_clip_value: 1.0
|
||||
randn_clip_value: 3
|
||||
|
Loading…
Reference in New Issue
Block a user